删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

滚动轴承声信号特征提取和诊断试验研究

本站小编 Free考研考试/2022-01-02

-->
余永增.滚动轴承声信号特征提取和诊断试验研究[J].,2018,37(6):889-894
滚动轴承声信号特征提取和诊断试验研究
Experimental research on feature extraction and diagnostics for acoustic emission signals of rolling bearings
投稿时间:2018-01-09修订日期:2018-10-31
中文摘要:
为解决振动检测方法不能有效识别低速旋转机械滚动轴承故障问题,利用声发射检测方法,建立了滚动轴承低速声发射信号采集试验装置,对模拟人工缺陷滚动轴承声发射信号进行了采集,进而对滚动轴承声发射信号进行总体平均经验模式分解,结合能量矩及相关系数法综合判断分解后各模态分量的真伪,据此提取出特征信号并做出其局部Hilbert边际谱,最后对滚动轴承各种故障模式进行诊断。试验结果表明该诊断方法能准确识别滚动轴承声发射信号故障频率,依据特征频率及幅值大小可对低速滚动轴承故障进行有效诊断。
英文摘要:
The acoustic emission method was used to diagnose low-speed rotating mechanical rolling bearing which vibration detection method can not diagnose effectively. An acoustic emission signal acquisition test device with low speed for rolling bearing was established in advance. The acoustic emission signals of the simulated artificial failure bearings were acquired. These signals of rolling bearings were decomposed by ensemble empirical mode decomposition method. Then the reliability of every intrinsic mode function was determined by energy moments and correlation coefficients. Characteristic signals were extracted and made to local Hilbert marginal spectrum. Thus a variety of failure modes of bearing were diagnosed. The experimental results show that this method can accurately identify the fault frequency of the acoustic emission signal of the rolling bearing, and according to the characteristic frequency and amplitude can effectively diagnose the fault of the low-speed rolling bearing.
DOI:10.11684/j.issn.1000-310X.2018.06.009
中文关键词:滚动轴承,声发射,总体平均经验模式分解,能量矩,Hilbert边际谱
英文关键词:Rolling bearings, Acoustic emission, Ensemble empirical mode decomposition, Energy moments, Hilbert marginal spectrum
基金项目:
作者单位E-mail
余永增中国石油兰州石化公司设备维修公司yuyongzeng509@sina.com
摘要点击次数:1093
全文下载次数:780
查看全文查看/发表评论下载PDF阅读器
相关附件:修改说明1修改说明1附件1
关闭








PDF全文下载地址:

http://yysx.cnjournals.cn/ch/reader/create_pdf.aspx?file_no=18005&flag=1&journal_id=yysx&year_id=2018
相关话题/信号 公司 中文 经验 英文