删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院力学研究所导师教师师资介绍简介-王云江

本站小编 Free考研考试/2020-05-23

姓名:王云江
性别:
职称:研究员
学历:博士
电话:
传真:
电子邮件:yjwang@imech.ac.cn
通讯地址北京市北四环西路15号 中国科学院力学研究所 1号楼547; 邮编:100190

简历:2018/11 - 至今 中国科学院力学研究所,研究员、博士生导师
2014/01 - 2018/10 中国科学院力学研究所,副研究员
2013/01 - 2013/12 京都大学,特定助理教授
2010/10 - 2012/12 大阪大学,JSPS外国人特别研究员
2005/09 - 2010/07 清华大学,物理系,博士
2001/09 - 2010/07 河北师范大学,物理学院,学士

研究领域:1. 物理力学
晶体、纳米晶体材料变形物理;非晶态物质变形物理;固体弹塑性本构;跨时空尺度力性关联。
2. 计算材料学
第一性原理、电子结构计算;分子动力学;跨时间尺度算法与应用;模特卡罗;有限元分析;材料基因工程和机器学习等。
3. 材料物理
固体缺陷、变形微观机制;材料变形热力学与动力学;晶格动力学;热激活理论、蠕变、应力松弛;位错形核与运动、扩散、孪晶、晶界、剪切转变;玻璃转变等。

指导研究生情况:
博士生:梁伦伟
硕士生:杨增宇、王一舟、王晓实、戴仕诚、陈健、赵坤、陶佳乐
毕业学生
2017,田智立 博士,航天三院工作
2018,杨 杰 硕士,中国工商银行工作
2019,魏 丹 博士,中科院力学所特别研究助理
2019,韩 懂 硕士,加州大学尔湾分校博士研究生
2019,杨奕博 国科大本科,芝加哥大学硕士研究生


招生招聘信息:
欢迎具有力学、物理、材料等相关背景的学生报考研究生;
常年招聘计算材料学、计算物理、计算力学方向的特别研究助理、博士后开展合作研究。


社会任职:1. 中国科学院大学岗位教授
2. Membership of MRS, TMS, APS
3. Reviewers for Journal of Applied Physics, JPCL, Philosophical Magazine, Journal of Alloys and Compounds, EPL, EPJB, Computational Materials Science, Thin Solid Film, Molecular Simulation, Solid State Communications, Materials Letters, Scientific Reports, Scripta Materialia, Materials & Design, Theoretical and Applied Mechanics Letters, Science China Technological Sciences, Chinese Physics B etc.

获奖及荣誉:1. 中国科学院青年创新促进会会员,2017
2. JSPS Fellowship, 2010

代表论著:1. Atomistic structural mechanism for the glass transition: Entropic contribution, Phys. Rev. B 101, 014113 (2020).
Figure: Glass transition and excess total entropy.
2. Revisiting the structure–property relationships of metallic glasses: Common spatial correlation revealed as a hidden rule, Phys. Rev. B 99, 014115 (2019).
Figure: Features of potential energy landscape in a model metallic glass. (Figure featured as PRB Kaleidoscope)
3. Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses, Phys. Rev. Lett. 122, 015501 (2019).

Figure: Spatial nature of an orientational order which predicts vibrational anomaly in glass.
4. A free energy landscape perspective on the nature of collective diffusion in amorphous solids, Acta Mater. 157, 165 (2018).

Figure: Accelerated molecular dynamics simulates diffusion of glass at laboratory timescale.
5. Transition from stress-driven to thermally activated stress relaxation in metallic glasses, Phys. Rev. B 94, 104203 (2016).
Figure: A two-stage stress relaxation in metallic glass.
6. Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations, J. Mech. Phys. Solids 94, 191-206 (2016).

Figure: Combined TEM and MD suggest novel creep mechanisms of nanoscale metals.
7.Universal enthalpy-entropy compensation rule in the deformation of metallic glasses, Phys. Rev. B 92,174118 (2015).
Figure: Boundaries between glass, supercooled liquid, and normal liquid using the concept of enthalpy-entropy compensation in metallic glasses and their melts.
8. Entropic effect on creep in nanocrystalline metals, Acta Mater. 61, 3866 (2013).
Figure: Entropy plays an important role in the plasticity of nanocrystal.
9. Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations, Phys. Rev. B 88, 115413 (2013).

Figure: Short-circuit diffusion channels in a nanocrystal.
10. Transition of creep mechanism in nanocrystalline metals, Phys. Rev. B 84, 224102 (2011).
Figure: Dislocation nucleation from grain boundary as a new creep mechanism. (Figure featured as PRB Kaleidoscope)
所有论著:
(#Equal contribution; *Corresponding Author)
Linked to ResearchGate; GoogleScholar; ResearchID
- 2020 -
王云江,魏丹,韩懂,杨杰,蒋敏强,戴兰宏. 非晶态固体的结构可以决定性能吗? 力学学报 52 (2), 303 (2020). [link]
D. Han, D. Wei, P. H. Cao, Y. J. Wang*, and L. H. Dai*, Statistical complexity of potential energy landscape as a dynamic signature of the glass transition, Phys. Rev. B 101, 064205 (2020). [link]
D. Han, D. Wei, J. Yang, H. L. Li, M. Q. Jiang, Y. J. Wang*, L. H. Dai*, and A. Zaccone*, Atomistic structural mechanism for the glass transition: Entropic contribution, Phys. Rev. B 101, 014113 (2020). [link]
L. W. Liang, Y. J. Wang*, Y. Chen, H. Y. Wang, and L. H. Dai*, Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings, Acta Mater. 186, 267-277 (2020). [link]
X. F. Liu, Z. L. Tian, X. F. Zhang, H. H. Chen, T. W. Liu, Y. Chen, Y. J. Wang, and L. H. Dai*, “Self-sharpening” tungsten high-entropy alloy, Acta Mater. 186, 257-266 (2020). [link]
- 2019 -
J. Ma, C. Yang, X. D. Liu, B. S. Shang, Q. F. He, F. C. Li, T. Y. Wang, D. Wei, X. Liang, X. Y. Wu, Y. J. Wang, F. Gong*, P. F. Guan*, W. H. Wang*, and Y. Yang*, Fast surface dynamics enabled cold joining of metallic glasses, Sci. Adv. 5, eaax7256 (2019). [link]
D. Wei, J. Yang, M. Q. Jiang, L. H. Dai, Y. J. Wang, J. Dyre, I. Douglass, and Peter Harrowell, Assessing the Utility of Structure in Amorphous Materials, J. Chem. Phys. 150, 114502 (2019). [link]
D. Wei, J. Yang, M. Q. Jiang, B. C. Wei, Y. J. Wang*, and L. H. Dai*, Revisiting the structure–property relationships of metallic glasses: Common spatial correlation revealed as hidden rule, Phys. Rev. B 99, 014115 (2019). (Figure was featured as a PRB Kaleidoscope) [link]
J. Yang, Y. J. Wang*, A. Zaccone, E. Ma, L. H. Dai, and M. Q. Jiang*, Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses, Phys. Rev. Lett. 122, 015501 (2019). [link]
Z. Y. Yang, Y. J. Wang*, and L. H. Dai*, Susceptibility of shear banding to chemical short-range order in metallic glasses, Scr. Mater. 162, 141 (2019). [link]
Y. Liu, S. L. Cai*, M. Y. Su, Y. J. Wang, and L. H. Dai*, Hierarchical-microstructure based modeling for plastic deformation of partial recrystallized copper, Mech. Mater. 139, 103207 (2019). [link]
L. W. Liang, L. Xiang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai*, Ratchetting in cold-drawn pearlitic steel wires, Metall. Mater. Trans. A 50, 4561 (2019). [link]
L. Xiang, L. W. Liang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai*, One-step annealing optimizes strength-ductility tradeoff in pearlitic steel wires, Mater. Sci. Eng. A 757, 1-13 (2019). [link]
G. Aral, M. M. Islam, Y. J. Wang, S. Ogata, and A. C. T. van Duin, Atomistic insights on the influence of pre-oxide shell layer and size on the compressive mechanical properties of nickel nanowires, J. Appl. Phys. 125, 165102 (2019). [link]
G.-J. J. Gao, Y. J. Wang, and S. Ogata, Incorporating a soft ordered phase into an amorphous configuration enhances its uniform plastic deformation under shear, AIP Adv. 9, 015329 (2019). [link]
Y. Liu, S. L. Cai*, F. G. Xu, Y. J. Wang, and L. D. Dai*, Enhancing strength without compromising ductility in copper by combining extrusion machining and heat treatment, J. Mater. Process. Technol. 267, 52 (2019). [link]
- 2018 -
Y. J. Wang*, J. P. Du, S. Shinzato, L. H. Dai*, and S. Ogata*, A free energy landscape perspective on the nature of collective diffusion in amorphous solids, Acta Mater. 157, 165 (2018). [link]
G. Aral*, M. M. Islam, Y. J. Wang, S. Ogata, and A. C. T. van Duin, Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties, Phys. Chem. Chem. Phys. 20, 17289 (2018). [link]
- 2017-
B. Y. Cui, J. Yang, J. C. Qiao, M. Q. Jiang, L. H. Dai, Y. J. Wang*, and A. Zaccone*, Atomic theory of viscoelastic response and memory effects in metallic glass, Phys. Rev. B 96, 094203 (2017). [link]
Z. L. Tian, Y. J. Wang, Y. Chen, and L. H. Dai*, Strain gradient drives shear banding in metallic glass, Phys. Rev. B 96, 094103 (2017). [link]
M. Q. Jiang*, M. Peterlechner, Y. J. Wang, W. H. Wang, F. Jiang, L. H. Dai, and G. Wilde, Universal structural softening in metallic glasses indicated by boson heat capacity peak, Appl. Phys. Lett. 111, 261901 (2017). [link]
- 2016 -
J. C. Qiao, Y. J. Wang*, L. Z. Zhao, L. H. Dai, D. Crespo, J. M. Pelletier, L. M. Keer, and Y. Yao*, Transition from stress-driven to thermally activated stress relaxation in metallic glasses, Phys. Rev. B 94, 104203 (2016). [link]
J. P. Du, Y. J. Wang*, Y. C. Lo, L. Wan, and S. Ogata*, Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study, Phys. Rev. B 94, 104110 (2016). [link]
X. S. Yang#, Y. J. Wang#, H. R. Zhai, G. Y. Wang, Y. J. Su, L. H. Dai, S. Ogata, and T. Y. Zhang*, Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations, J. Mech. Phys. Solids 94, 191-206 (2016). [link]
X. S. Yang#, Y. J. Wang#, G. Y. Wang, H. R. Zhai, L. H. Dai, and T. Y. Zhang*, Time, stress and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations, Acta Mater. 108, 252-263 (2016). [link]
Y. J. Wang*, M. Q. Jiang, Z. L. Tian, and L. H. Dai*, Direct atomic-scale evidence for shear–dilatation correlation in metallic glasses, Scr. Mater. 112, 37 (2016). [link]
N. Miyazaki, M. Wakeda*, Y. J. Wang, and S. Ogata*, Prediction of pressure-promoted thermal rejuvenation in metallic glasses, npj Comput. Mater. 2, 16013 (2016). [link]
Y. J. Wang*, K. Tsuchiya, and L. H. Dai*, Size-dependent plastic deformation and failure mechanisms of nanotwinned Ni3Al: insights from an atomistic cracking model, Mater. Sci. Eng. A 649, 449 (2016). [link]
G. Aral*, Y. J. Wang, S. Ogata, and Adri C. T. van Duin, Effects of oxidation on tensile deformation of iron nanowires: Insights from reactive molecular dynamics simulations, J. Appl. Phys. 120, 135104 (2016). [link]
M. Zhang, Y. J. Wang, and L. H. Dai*, Correlation between strain rate sensitivity and α relaxation of metallic glasses, AIP Adv. 6, 075022 (2016). [link]
X. Huang, Z. Ling, Y. J. Wang, and L. H. Dai*, Intrinsic structural defects on medium range in metallic glasses, Intermetallics 75, 36-41 (2016). [link]
M. Zhang, Y. J. Wang, and L. H. Dai*, Understanding the serrated flow and Johari-Goldstein relaxation of metallic glasses, J. Non-Crystalline Solids 444, 23 (2016). [link]
- 2015 -
Y. J. Wang*, S. Ogata*, and L. H. Dai*, Universal enthalpy-entropy compensation rule in the deformation of metallic glasses, Phys. Rev. B 92,174118 (2015). [link]
J. C. Qiao, Y. J. Wang, J. M. Pelletier, Leon M. Keer, Morris E. Fine, and Y. Yao*, Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass, Acta Mater. 98, 43 (2015). [link]
M. Q. Jiang*, M. Naderi, Y. J. Wang, M. Peterlechner, X. F. Liu, F. Zeng, F. Jiang, L. H. Dai, and G. Wilde, Thermal expansion accompanying the glass-liquid transition and crystallization, AIP Adv. 5, 127133 (2015). [link]
M. Zhang, Y. J. Wang, and L. H. Dai*, Bridging shear transformation zone to the atomic structure of amorphous solids, J. Non-Crystalline Solids 410, 100 (2015). [link]
- 2013 -
Y. J. Wang*, G. J. Gao, and S. Ogata*, Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations, Phys. Rev. B 88, 115413 (2013). [link]
Y. J. Wang*, A. Ishii, and S. Ogata*, Entropic effect on creep in nanocrystalline metals, Acta Mater. 61, 3866 (2013). [link]
Y. J. Wang*, G. J. J. Gao, and S. Ogata*, Size-dependent transition of deformation mechanism, and nonlinear elasticity in Ni3Al nanowires, Appl. Phys. Lett. 102, 041902 (2013). [link]
S. Yamamoto, Y. J. Wang*, A. Ishii, and S. Ogata*, Atomistic design of high strength crystalline-amorphous nanocomposites, Mater. Trans. 54, 1592 (2013). [link]
G. J. Gao*, Y. J. Wang, and S. Ogata, Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains, Comput. Mater. Sci. 79, 56 (2013). [link]
- 2012 -
Y. J. Wang*, A. Ishii, and S. Ogata*, Grain size dependence of creep in nanocrystalline copper by molecular dynamics, Mater. Trans. 53, 156-160 (2012). [link]
- 2011 -
Y. J. Wang*, A. Ishii, and S. Ogata*, Transition of creep mechanism in nanocrystalline metals, Phys. Rev. B 84, 224102 (2011). (Figure was featured as a PRB Kaleidoscope) [link]
Y. J. Wang, C. Y. Wang, and S. Y. Wang*, CO adsorption on small Au_n (n = 1-7) clusters supported on a reduced rutile TiO2(110) surface: a first-principles study, Chin. Phys. B 20, 036801 (2011). [link]
- 2009 -
Y. J. Wang* and C. Y. Wang, A comparison of the ideal strength between L12 Co3(Al,W) and Ni3Al under tension and shear from first-principles calculations, Appl. Phys. Lett. 94, 261909 (2009). [link]
Y. J. Wang* and C. Y. Wang, Influence of the alloying element Re on the ideal tensile and shear strength of γ’-Ni3Al, Scr. Mater. 61, 179-200 (2009). [link]
Y. J. Wang* and C. Y. Wang, Influence of the alloying elements on the elastic properties of the ternary and quaternary Nickel-base superalloys, Philos. Mag. 89, 2935-2947 (2009). [link]
Y. J. Wang* and C. Y. Wang, First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers, Chin. Phys. B 18, 4339-4348 (2009). [link]
Y. J. Wang and C. Y. Wang, Effect of alloying elements on the elastic properties of γ-Ni and γ’-Ni3Al from first-principles calculations, MRS Proceedings 1224, 1224-FF05-31 (2009). [link]
Y. J. Wang* and C. Y. Wang, Mechanical properties and electronic structure of superhard diamondlike BC5: a first-principles study, J. Appl. Phys. 106, 043513 (2009). [link]
J. Wang and Y. J. Wang*, Mechanical and electronic properties of 5d transition metal diborides MB2 (M= Re, W, Os, Ru), J. Appl. Phys. 105, 083539 (2009). [link]
- 2008 -
Y. J. Wang* and C. Y. Wang, A first-principles survey of the partitioning behaviors of alloying elements on γ/ γ’ interface, J. Appl. Phys. 104, 013109 (2008). [link]
Y. J. Wang* and C. Y. Wang, The alloying mechanisms of Re, Ru in the quaternary Ni-based superalloys γ/ γ’ interface: a first principles calculation, Mater. Sci. Eng. A 490 (2008) 242-249. [link]
承担科研项目情况:-主持项目-
1. 国家自然科学基金面上项目,2017-2020;金属玻璃应力松弛与蠕变多级动力学跨时间尺度计算机模拟
2. 国家重点研发计划材料基因工程关键技术与支撑平台重点专项,2017-2020;高通量并发式材料计算算法和软件;任务负责人。
3. 国家自然科学基金青年科学基金,2015-2017;非晶/纳米晶复合材料原子尺度塑性机制
4. 中国科学院青年创新促进会会员人才专项经费,2017-2020
5. 中科院力学所特聘副研启动经费,2014-2016;非晶复合材料微观变形机理研究
-参与项目-
1. 国家重点研发计划材料基因工程关键技术与支撑平台重点专项,2017-2020;多场耦合条件下金属结构材料损伤演化行为的跨尺度关联评价;研究骨干。
2. 国家自然基金重大项目,2017-2020;无序合金塑性流动与强韧化机理;研究骨干。
3. 中国科学院“超常环境下系统力学问题研究与验证”先导专项(B类)项目,2016-2020;研究骨干。
4. 中国科学院前沿科学重点研究项目,2017-2021;新型高强金属材料剪切带的涌现与调控;参与。
Updated on March 27, 2020





相关话题/中国科学院 力学