Constraining the cosmic ray propagation halo thickness using Fermi-LAT observations of high-latitude
本站小编 Free考研考试/2022-01-01
Yuhua Yao1,2, , Bing-Qiang Qiao2, , Wei Liu2, , Qiang Yuan3,4, , Hong-Bo Hu2,5, , Xiao-Jun Bi2,5, , Chao-Wen Yang1, , Yi-Qing Guo2,5, , 1.College of Physics, Sichuan University, Chengdu 610064, China 2.Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 3.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 4.School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China 5.University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China Received Date:2021-03-31 Available Online:2021-10-15 Abstract:The diffusive halo is a basic characteristic of cosmic ray (CR) propagation and can advance our understanding of many CR-related phenomena and indirect dark matter. The method used to derive the halo size often has degeneracy problems and is thus affected by large uncertainties. The diffuse $\rm\gamma$ rays from high-latitude clouds might shed light on the halo size independently. Because predictions using the spatially dependent propagation (SDP) model have better agreement with the observed CRs than those of the conventional propagation model, in this work, we investigated halo thickness based on the SDP model using Fermi-LAT $\rm\gamma$-ray observations of high- and intermediate-velocity clouds. We found that to avoid exceeding the relative $\gamma$-ray emissivity in high-latitude clouds, the halo thickness should be in the range of 3.3-9 kpc. Moreover, the spatial morphology of $\rm\gamma$-rays estimated based on the SDP model for different values of the halo thickness are distinctive, which provides us with a tool to determine the halo size. This newly developed model can be tested and tuned using multi-wavelength observations in future studies.
HTML
--> --> -->
II.MODEL DESCRIPTIONWhile traveling from galactic acceleration sites, CRs may undergo many processes before arriving at Earth. All these physical processes can be described as follows:
where $\psi({\boldsymbol{r}},p,t)$ is the CR density per unit particle momentum, $Q({\boldsymbol{r}}, p, t)$ is the source distribution, ${D_{xx}}$ is the diffusion tensor in physical space, and ${D_{pp}}$ the diffusion coefficient in momentum space. ${\dot{p}}$ is the momentum loss rate resulting from interactions with the ISM, GMFs, or the interstellar radiation field (ISRF), and ${\tau_{\rm f} }$ and ${\tau_{\rm r} }$ are the time scales for fragmentation loss and radioactive decay, respectively. ${V_{\rm c}}$ is the convection velocity, but convection processes were ignored in this work. The injection spectrum of CR sources is given as follows:
where $q_0$ is a normalization coefficient, $ \nu_1 $ ($ \nu_2 $) is the spectral index below (above) $p_{\mathrm{br}}$, and ${\hat{p}}$ is the cutoff rigidity. The spatial distribution of sources takes the form of an SNR distribution reported previously [31]:
with $r_\odot = 8.5$ kpc, $z_s = 0.2$ kpc, $ a = 1.69 $, and $ b = 3.33 $. The diffusion coefficient, ${ D_{xx}}$, which depends on the radial distance r, vertical height z, and particle rigidity p, can be written as
where $D_0$ represents the normalization factor at $p_0$; $ \rm\eta $ is the low-energy correction factor of the diffusion coefficient, which was fixed at 0.05; $ \rm\delta_0 $ characterizes the rigidity dependence of the diffusion coefficient; and F(r,z) is anticorrelated with the source density distribution f(r,z). F(r,z) is parameterized as
where n characterizes the sharpness between the inner and outer halos,
$ g(r,z) = \frac{N_m}{1+f(r,z)}, $
(6)
and $N_m$ is a normalized factor. The difference between the CP and SDP models is the value of $F(r,z)$ of the inner halo. For the CP model, it is a constant, while for the SDP model, it is related to the source distribution. Thus, the diffusion coefficients of the CRs with the same rigidity in two different locations are the same for the CP model, while they are related to f(r,z) and $\xi z_h$ for the SDP model. Re-acceleration is modeled as momentum-space diffusion, where the coefficient $D_{pp}$ is related to the spatial coefficient $D_{xx}$ via the effective $ \rm Alfvénic $ velocity $v_{\rm A}$, as follows:
where $\delta = F(r,z)\delta_0$. More detailed descriptions about the SDP model have been published previously [32-36]. The numerical package DRAGON [37] was used to solve the transport equation.
-->
A.Effects of varying $\boldsymbol{z_h}$ on $ \gamma $-ray emissivity
Propagation parameters used previously [30] were employed to calculate the $ \rm \gamma $-ray emissivity. This set of parameters was obtained under the SDP plus local source assumption, which reproduces various anomalies well, such as CR spectrum and CR anisotropy anomalies. The detailed parameters are listed in Table 1. Figure 1 shows the $ \rm\gamma $-ray emissivities normalized to the value at the Sun's position with this model transport configuration and various halo heights. The gray rectangles [29] represent emissivity scaling factors from the Fermi-LAT, which are the ratios of the $ \gamma $-ray emissivity ($ \gamma $-ray emission rate per hydrogen atom) in each region of HVCs and IVCs to the values in the disk in the solar circle, with measured energies between $ \rm 300\; MeV $ and $ \rm 10\; GeV $. The emissivity of the local gas was assigned to the range from $z = 0\;\rm kpc$ to $ \rm 0.3\; kpc $ (disk). The horizontal widths of the rectangles indicate the lower and upper limits on their distances, and the vertical height in dark gray (light gray) corresponds to the total statistical uncertainties of the emissivity scaling factors. Detailed information about the target regions and their emissivity scaling factors has been reported previously [29].
$z_h$/ kpc
$D_0$/ $\rm 10^{28}\; cm^{2}\; s^{-1}$
$N_m$
$\rm\delta_{0}$
$v_{\rm A}$/ $\rm\; km\; s^{-1}$
SDP+local source $^\ddagger$
8.76
0.39
0.65
3.5
CP
5
3.72
0.24
0.46
22
SDP
3.3
3.25
0.25
0.58
6
5
5.04
0.29
0.6
6
9
7.25
0.37
0.65
6
15
10.8
0.40
0.69
6
$^\dagger$n and $\xi$ were set to 4 and 0.1, respectively. $^\ddagger$This set of parameters was adopted from [30].
Table1.Propagation parameters$^\dagger$.
Figure1. (color?online)?Model predictions of the $ \gamma $-ray emissivity with energies ranging from $ \rm 300\; MeV $ to $ \rm 10\; GeV $ were compared with the data. A set of ready-made transport configurations under the SDP + local source assumption [30] with various halo heights was employed, and the detailed parameters are listed in Table 1. Purple, red, blue, and green lines represent the SDP model with $z_h = 3.3, 5, 9,$ and $ \rm 15\; kpc $, respectively. Shaded rectangles are the emissivity scaling factors from Fermi-LAT observations [29].
There was general agreement between the model curves and measurements in the region of the left panel ($l = 240^{\circ}, b = 75^{\circ}$), which is an extension of the IV Arch. In the region of the right panel ( $l = 150^{\circ}, b = 35^{\circ}$), together with the emissivity of the low-latitude IVs, upper limits from the HVC in the latitude of $ \rm 2.6 $–$ \rm 6.8\; kpc $ provide the strongest limit on the value of the halo size. To not exceed the upper limit, the halo size must satisfy $ 3.3\; {\rm kpc} < z_h < 9\; {\rm kpc} $. Furthermore, the $ \gamma $-ray emissivity at low latitudes (IH) was nearly the same, regardless of the size of the halo. The differences between the models increased with latitude; thus, $ \gamma $-ray observations of mid- and high-latitude clouds should be very valuable. 2B.Effects of varying propagation parameters on $\boldsymbol\gamma$-ray emissivity -->
B.Effects of varying propagation parameters on $\boldsymbol\gamma$-ray emissivity
The results from a set of second-hand fixed propagation parameters and various $z_h$ values indicated that the relative $ \gamma $-ray emissivity changed with the thickness of the halo. However, the propagation parameters would change with different halo heights. Below, the results with propagation parameters adjusted by the halo height are presented and used to test the statements above. First, fits of the model prediction to the B/C and $ \rm {}^{10}Be/{}^{9}Be $ ratios were performed to determine the propagation parameters. The CR spectra and large-scale all-sky $ \rm \gamma $-rays were used to verify the consistency between the predictions from well-tuned models and observations. Consequently, the tuned transport parameters are listed in Table 1, and diagrams showing the secondary-to-primary ratios, CR spectra, and large-scale all-sky $ \rm \gamma $-rays are shown in the Appendix. The $ \rm \gamma $-ray emissivity values were calculated again, and results from the CP model are also shown for comparison. With the propagation parameters listed in Table 1, the $ \gamma $-ray emissivity calculation was repeated, and the results are presented in Fig. 2; they are not significantly different from the model curves in Fig. 1. This suggests that the propagation parameters had little effect on the distribution of the $ \rm \gamma $-ray emissivity for specific $\xi z_h$. At steady state, propagation is dominated by diffusive processes, and Eq. (1) can be expressed as $ \boldsymbol{\nabla}\; \cdot\; \left( D_{xx}\boldsymbol{\nabla}\psi\right) = \rm-Q $. Therefore, $ \rm \psi $ is directly proportional to $D_{0}$. Once the $\xi z_h$ values are selected, the ratio of the fluxes of the $ \rm\gamma $-rays with the same rigidity in two different locations will be a constant determined by f(r,z). Figure2. (color?online)?Model predictions of the $ \gamma $-ray emissivity with energies ranging from $ \rm 300\; MeV $ to $ \rm 10\; GeV $ compared with the data. The propagation parameters were properly tuned with various halo heights under the pure SDP model assumptions and are listed in Table 1. Purple, red, blue, and green lines represent the SDP model with $z_h = 3.3, 5, 9,$ and $ \rm 15\; kpc $, respectively. Black lines are from the CP model. Shaded rectangles are the emissivity scaling factors from Fermi-LAT observations [29].
-->
A.Different energies
As a tracer of CRs, we would expect that the $ \gamma $-ray emissivities would vary with energy based on the SDP model. The left side of Fig. 3 presents the $ \gamma $-ray emissivities calculated from the SDP and CP models assuming values the of energy between $ \rm 0.3\; GeV $ and $ \rm 1\; TeV $. With distance from the disk, the curve estimated from the CP model decreases smoothly, and the energy had a slight influence. Increasing the galactocentric radius $z$ to $ \rm 2\; kpc $ resulted in a decrease in the emissivity of up to 40% for the CP model. However, in the SDP model, the emissivity curve had two segments, corresponding to the transition from the IH to the OH. Moreover, as the energies increased, the scaled fluxes close to the disk decreased more rapidly. The decrease in the $ \rm 0.3\; GeV $$ \gamma $-ray emissivities within $z < 3\;\rm kpc$ for the SDP model was roughly consistent with that of the CP model. Beyond $ \rm 3\; kpc $, the SDP model prediction had a slower descent. As the $ \gamma $-ray energy increased to $ \rm 10\; GeV $, its emissivity was only approximately half the intensity of that at 3 GeV, with different z values. For even higher energies, the emissivity decreased to less than 10% within 1 kpc. Figure3. (color?online)?Model predictions of the $ \gamma $-ray emissivity as a function of the vertical scale from the disk. Solid lines represent the contribution from the SDP model, and dashed lines represent the contribution from the CP model. For the SDP model, the set of parameters for $z_h = 9\; {\rm kpc}$ are adopted here. Left: blue, red, black, and green lines represent photon energies of $ \rm 0.3 $, $ \rm 10 $, $ \rm 100 $ Gev, and $ \rm 1\; TeV $, respectively. Right: blue, red, black, and green lines represent $ \gamma $-ray emissivity from $ \rm 300\; MeV $ to $ \rm 10\; GeV $ at galactocentric radial distances of $ \rm 3, 5, 8.5, $ and $ \rm 15\; kpc $, respectively.
2B.Different galactocentric radii -->
B.Different galactocentric radii
To further explore the spatial morphologies of CRs, the right side of Fig. 3 shows the emissivities at various galactocentric radial scales in the disk, ranging from 3 to 15 kpc. The emissivity curve of the CP model underwent a limited change because of the diffusion coefficient being constant throughout the galaxy. It decreased linearly with z from the disk to the boundary of the halo. However, because of the spatially dependent diffusion coefficient, the emissions of the SDP model strongly depended on the galactocentric radius. The larger the galactocentric radius, the slower the decrease in emissivity with z. When the radius increased to a certain extent, the result from the SDP model gradually approached that from the CP model. These properties are highly beneficial for distinguishing them with multi-wavelength observations in the future. Because of the constant diffusion coefficient, the CP model predicted gentle spatial-morphology changes and limited variations in the various energies and galactocentric radii. In contrast, the emissions of the SDP model strongly depended on the galactocentric radius and energies because of the spatially dependent diffusion coefficient. The propagation parameters were selected as $z_{h} = 9\; {\rm kpc}$, but the following discussion should also be valid for other parameters. In addition, the diffusive volume in the SDP model was divided into two regions for this study. The real halo might have more segments, and its characteristics might be more complicated. Observations of mid- and high-latitude clouds in the future can verify or update our model. In summary, based on the SDP model, we performed a study of halo thickness. SDP models with halo heights in the range of $ \rm 3.3 $ to $ \rm 9\; kpc $ were found to provide good fits to the $ \rm \gamma $-ray emissivity from high- and intermediate-velocity clouds. The $ \rm \gamma $-ray emissivity is a good estimator of the halo height. More observations of mid- and high-latitude $ \rm \gamma $-ray emissivity in the future can advance our understanding of the specific distribution of the CR diffusive halo.