删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Static fluid spheres admitting Karmarkar condition

本站小编 Free考研考试/2022-01-01

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂傚洤顦甸弻銊モ攽閸℃瑥顤€濡炪倕绻掓慨椋庢閹烘鐒垫い鎺嶈兌缁♀偓闂佺ǹ鏈〃鍡涘棘閳ь剟姊绘担铏瑰笡閽冭京鎲搁弶鍨殻闁糕斁鍋撳銈嗗坊閸嬫挻銇勯弴銊ュ箻婵″弶鍔欓獮姗€骞囨担鐟板厞闂佸搫顦悧鍕礉瀹€鍕嚑闁硅揪闄勯埛鎴︽煕濠靛棗顏╅柡鍡樼懇閺岋絽螖閳ь剛鈧矮鍗冲畷娲焵椤掍降浜滈柟杈剧稻绾墎绱掗幇顓熲拻闁逞屽墯椤旀牠宕伴弴鐘插灊婵炲棙鎸堕埀顑跨椤粓鍩€椤掑嫬绠栨繛鍡樻尰閸ゆ垿鏌涢妸锔锯槈濞存粓绠栭弻娑⑩€﹂幋婵囩亐闂佽 鍋撳ù鐘差儐閻撱儲绻涢幋鐏活亪顢旈埡浼卞綊鎮╁▎蹇斿櫧缁炬儳鍚嬮妵鍕即閻愭潙娅i梺璇查獜婵″洭鍩€椤掍緡鍟忛柛锝庡櫍瀹曟垶绻濋崶褏鐣洪梺鍐叉惈閸熸壆澹曢崗闂寸箚妞ゆ牜鍋為弫閬嶆倵濮橆兙鍋㈡慨濠傤煼瀹曟帒鈻庨幋锝囩崶闂備胶枪椤戝懎螞濠靛棛鏆﹂柟瀛樼妇濡插牓鏌曡箛濞惧亾閾忣偒鍚呭┑锛勫亼閸婃牠鎮уΔ鍐煓闁圭儤鍨熼弸宥夋煟濡偐甯涢柣鎾寸懅缁辨挻鎷呴棃娑氫患闂佸搫顑囬崰鏍蓟閿濆绠婚悹铏瑰劋閻忓牓姊洪崫鍕伇闁哥姵鐗曢悾鐤亹閹烘繃鏅╅梺绋跨箰閸氬顢欓崟顐熸斀闁绘劘灏欓幗鐘电磼椤旇偐校缂佹梻鍠栧畷鍗炩槈濡厧濮︽俊鐐€栫敮鎺楀窗濮橆兗缂氶柟閭﹀幘缁犻箖鏌涘▎蹇fШ濠⒀屽墴閺岋繝宕ㄩ弶璺ㄥ帿闂佽鍨卞Λ鍐╀繆閹间礁唯鐟滄粓宕ぐ鎺撯拻濞达絽鎲¢崯鐐寸箾鐠囇呯暤鐎规洘绮岄~婵嬵敇閻斿嘲浼庢繝鐢靛Т閿曘倝鎮ф繝鍥ㄥ亗婵炴垶锕╅悢鍡涙偣鏉炴媽顒熼柛搴$箲閵囧嫰寮撮悢铏圭厜闂佸搫鐭夌徊楣冨箚閺冨牆顫呴柣姗嗗亝閻忓棙绻濆▓鍨灈闁挎洏鍊濋垾锕€鐣¢幍顔芥闂佸湱鍎ら崹鐔煎几鎼淬劍鐓欓悗鐢登瑰暩閻庤娲橀悡鈥愁潖缂佹ḿ鐟归柍褜鍓熼崺鈧い鎺戝€告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢閬嶆煟鎼搭垳绉甸柛瀣鐓ら柟缁㈠枟閻撴瑧鈧娲栧ú銈夊几濞戞瑣浜滈柕蹇ョ磿閳藉鏌嶉挊澶樻Ц闁宠閰i獮鍥敊閻撳簶鏋忔繝鐢靛Х閺佹悂宕戝☉銏╂晪妞ゆ挶鍨归崒銊ф喐閺冨牆绠栨繛宸簻鎯熼梺鍐叉惈閸婂憡绂嶅Δ鍛拺闁告繂瀚崒銊╂煕閵婏附銇濋柟顕嗙節閹垽姊归幇顔剧暰婵$偑鍊栭悧妤冩崲閸岀偛瑙︾憸鐗堝笚閻撴洘绻涢崱妤勫濞存粓绠栧濠氬磼濞嗘埈妲梺纭咁嚋缁绘繈骞冮悜钘壩ㄧ憸澶愬磻閹炬剚娼╅柣鎾冲閻濇繈姊虹化鏇熸澒闁稿鎸搁—鍐Χ閸℃鐟ㄩ梺鍝ュУ閼规儳鐜婚崸妤€绠涙い鎾跺Х椤旀洟姊洪崷顓犲笡閻㈩垳鍋熺划濠氭嚒閵堝倸浜鹃悷娆忓缁€鈧紓鍌氱Т閿曨亪鐛繝鍥ㄥ€烽柛婵嗗珋閵娾晜鐓忛柛顐g箖瀹告繈鏌i敐澶岀暫婵﹦绮幏鍛矙濞嗙偓顥戦梻浣呵归鍛村箠鎼达絽寮查梻浣告惈缁嬩線宕㈡禒瀣9鐎瑰嫭澹嬮弨浠嬫煟濡搫绾у璺哄閺岋綁骞樺畷鍥╊唶闂佸疇顫夐崹鍧楀箖濞嗘挻鍤戞い鎴e劵濡炬悂姊绘担鍛婂暈婵﹦鎳撳玻鍨枎閹惧鐣抽梻鍌欒兌鏋紒缁樺姍瀹曘儳鈧綆鍓涢惌鍡涙倵閿濆骸浜濋柛娆忕箰閳规垿鎮╅幓鎺撴闂侀潧娲︾换鍫ュ蓟閻旇櫣椹抽柛锔诲幘閻﹀牊绻濈喊妯峰亾瀹曞洤鐓熼悗瑙勬磸閸旀垿銆佸▎鎾寸叆妞ゆ牗鐭竟鏇熶繆閵堝繒鍒伴柛鐕佸灦閸╂盯骞嬮敂鐣屽幘婵犳鍠楅崝鏇㈠焵椤掍焦绀嬬€殿喗鎮傚畷鎺楁倷鐎电ǹ骞堥梺鐟板悑閻n亪宕硅ぐ鎺戠厺闁哄洢鍨洪悡鏇㈡煃鐟欏嫬鍔ゅù婊呭亾娣囧﹪鎮欓鍕ㄥ亾閺嶎偅鏆滃┑鐘插閻棗銆掑锝呬壕閻庤娲滈弫濠氥€佸Δ鍛妞ゆ帒鍊搁獮鍫熺節閻㈤潧浠滄俊顐n殘閹广垽骞囬弶鎸庤緢濠电偛妫欓崝鎴炵濠婂牊鐓涢柛銉︽构缁ㄧ晫绱掓径妯烘灍妞ゃ劊鍎甸幃娆撳蓟閵夈儱鍙婇梻浣告贡鏋柨鏇樺劚椤曘儵宕熼姘辩杸濡炪倖甯婇悞锕€袙閸℃稒鈷掗柛灞捐壘閳ь剟顥撳▎銏狀潩椤戣偐绱伴悷婊勬⒒閻︻剟姊洪柅鐐茶嫰婢ь噣鏌嶇憴鍕伌闁搞劑绠栭幖褰掝敃閵忥紕浜烽梺璇叉唉椤煤韫囨稑鍨傚ù鐘差儏閽冪喖鏌涢埄鍐炬闁告艾顑夐弻娑㈠灳瀹曞洨顔夐柣搴㈣壘閵堟悂寮婚敐澶嬪亜闁告縿鍎抽悡鍌涚節閳封偓閸曞灚鐣奸梺杞扮贰閸o綁鐛幒妤€绠诲Λ鐗堢箖闁裤倕鈹戦悙宸殶闁告鍥ㄥ仱闁靛ň鏅滈崑鍌炴煛閸ャ儱鐏柣鎾寸懇閺岀喖顢涢崱妤勫婵炲牆鐖煎娲偡閺夋寧姣愬┑鐐叉▕閸欏啫顕f繝姘嵆闁靛繒濮撮懓鍨攽鎺抽崐鎰板磻閹剧粯鐓涢柛鈩冡缚閹冲洭鏌$仦鐣屝ら柟椋庡█瀵濡烽妷銉ュ挤濠德板€楁慨鐑藉磻濞戙埄鏁勫鑸靛姇缁犳牠鏌嶉崫鍕殭闁哄鐗嗛…璺ㄦ崉妤﹀灝顏紓浣靛妸閸庨潧顫忔繝姘<婵﹩鍏橀崑鎾搭槹鎼达絿鐒兼繛鎾村焹閸嬫挻顨ラ悙宸█闁轰焦鎹囬幃鈺呭礃闊厾鏁鹃梻鍌欑劍鐎笛兠洪弽顓炵9鐟滅増甯掗悿鐐亜韫囨挾澧涢柣鎾跺枛楠炴牕菐椤掆偓閳ь兙鍊曞玻鍧楀箛閻楀牏鍘甸梺鍛婄缚閸庢垹娑甸崨顖欑綍濠电姷鏁搁崑鐐哄垂椤栫偛鍨傜憸鐗堝笚閸婂潡鏌涢…鎴濅簴濞存粍绮撻弻鐔兼倻濡櫣浠撮梺鍝勵儍閸婃牜鎹㈠☉銏犵闁绘挸楠搁~宥囩磽娴h櫣甯涢柣鈺婂灦閻涱噣骞樼拠鑼唺闂佸搫鍟崑鍡涘疮鐎n喗鐓熼幖娣€ゅḿ鎰箾閸欏缂氶柟骞垮灲瀹曞ジ濡疯缁侊箓鏌f惔顖滅У闁哥姵顨婂鎻掆攽鐎n偆鍘撻悷婊勭矒瀹曟粓鎮㈡總澶婃闂佸憡绋戦敃锕傛偡瑜版帗鐓冪憸婊堝礈閻斿鍤曞┑鐘崇閸嬪嫰鏌i幘铏崳妞わ富鍙冮幃宄扳堪閸愵亞顔婇梺杞扮贰閸犳牠鍩ユ径鎰潊闁挎稑瀚獮鎰版⒒娴e憡鍟炲〒姘殜瀹曟澘螖閸涱厾锛欓梺瑙勫婢ф鎮″☉銏″€堕柣鎰邦杺閸ゆ瑥鈹戦鐓庘偓鍧楀蓟閻旂⒈鏁婇柛婵嗗閸嬫挸鈹戦崱娆愭闂佸湱鍎ら崹鐔肺i崼鐔稿弿婵°倐鍋撴俊顐f⒒濡叉劙鏁撻敓锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱濠电姴鍊归崑銉╂煛鐏炶濮傜€殿噮鍣e畷濂告偄閸涘⿴鍞堕梻鍌欒兌鏋い鎴濇楠炴劙宕滆閸ㄦ繃銇勯幘璺轰汗婵℃彃鐗婃穱濠囶敍濠垫劕娈┑鐐叉啚閸ャ劉鎷哄┑鐐跺蔼椤曆囩嵁濡ゅ懏鐓熼柣鏂垮级濞呭﹦鈧鍠栭…鐑藉箖閵忋倕宸濆┑鐘插鑲栨繝寰锋澘鈧呭緤娴犲鐤い鏍剱閺佷胶鈧箍鍎遍ˇ浼村煕閹寸姷纾奸悗锝庝簽娴犮垺銇勯幒瀣伈闁哄矉绱曟禒锔炬嫚閹绘帩娼庨梻浣虹《閺呮繈宕戦妶澶屽祦閻庯綆鍠楅弲婵嬫煃瑜滈崜娑欑珶閺囥垹绀傞柛蹇曞帶瀵灝鈹戦绛嬫當婵☆偅顨婇悰顕€寮介鐔哄幐闂佺硶鍓濋〃鍫熸櫠閿旇姤鍙忓┑鐘叉噺椤忕姷绱掗鐣屾噧闁宠閰i獮鍡氼槻濠㈢懓顑夊缁樻媴閸涘﹥鍠愭繝娈垮枤閺佽鐣峰┑鍠棃宕ㄩ鐙€鍞归梻渚€娼х换鎺撴叏椤撶倣锝夊醇閵夛妇鍘棅顐㈡处濞叉牕鏆╂俊鐐€栭幐鎼佸箹椤愶箑鐓橀柟杈鹃檮閸婄兘鏌涘▎蹇f▓婵☆偆鍋熺槐鎾存媴閾忕懓绗¢柣銏╁灡椤ㄥ牏鍒掔€n喖绠虫俊銈勭濞堟劙姊洪崘鍙夋儓闁哥喍鍗抽弫宥呪堪閸涱垳锛濋梺绋挎湰閻熲晛顬婇悜鑺ョ厱闁靛ǹ鍎崇粔娲煟濞戝崬娅嶆鐐叉喘閹囧醇閵忕姴绠為梻浣筋嚙閸戠晫绱為崱娑樼;闁告侗鍘鹃弳锕傛倶閻愰潧浜鹃柛娆忕箰閳规垿鎮╅崣澶婃濡炪倕绻掓繛鈧柡宀€鍠愰ˇ鐗堟償閳锯偓閺嬪懘鎮楀▓鍨灈妞ゎ參鏀辨穱濠囨倻缁涘鏅╅梺鑽ゅ枛椤o附绔熼弴鐐╂斀閹烘娊宕愰幘缁樺殑闁告挷绀佹慨顒勬煃瑜滈崜鐔奉潖濞差亝鐒婚柣鎰蔼鐎氭澘顭胯閸ㄨ京鎹㈠☉銏″亗閹艰揪绲块鎺撶節绾版ê澧查柟顔煎€垮顐﹀礃椤旇偐鍔﹀銈嗗坊閸嬫挻銇勯弴顏嗙М鐎规洜枪铻栧ù锝呮惈楠炴姊洪悷鏉挎倯闁伙綆浜畷婵嗩吋閸涱亝顫嶉悷婊勬瀵鎮㈤崗鐓庢疅闂侀潧锛忛崨顖氬笒缂傚倸鍊风粈渚€顢栭崨姝ゅ洭顢涢悜鍡樻櫍婵犻潧鍊绘灙妤犵偑鍨介弻鐔兼焽閿旇法鏁栭梺鐑╂櫅闁帮絽顫忕紒妯诲闁告稑锕ラ崕鎾剁磽娴e壊鍎庣紒鑸佃壘閻g兘骞嬮敃鈧粈瀣亜閹烘垵浜炴繛鏉戝濮婃椽骞愭惔銏㈩槬闂佺ǹ锕ょ紞濠囧箖閿熺姵鍋勯柛蹇氬亹閸樼敻姊虹拠鈥崇€婚柛娑卞枟閸犳牜绱撻崒娆掝唹闁稿鎹囬弻娑㈠箛閸忓摜鏁栫紒鐐礃閸嬫劗妲愰幘瀛樺閻犳劦鍨崇槐鏉库攽閻愭潙绲绘い鏇ㄥ弮閸┾偓妞ゆ帒鍠氬ḿ鎰箾閸欏澧柣锝囧厴椤㈡宕橀鍐焻闂傚倸鍊风粈渚€骞夐敍鍕床闁稿本澹曢崑鎾愁潩椤掆偓濡茶鐣濋敐鍛仴鐎殿喗鎸抽幃娆撳煛閸屾稒婢戦梻鍌欒兌缁垶鏁冮埡鍛;闁告侗鍠栭崹鏂棵归悡搴f憼闁稿﹤鐖奸弻锝夊箛椤栨氨鍘銈冨劚椤︿即濡甸崟顖f晝妞ゆ劧绱曢弫鏍磽娴d粙鍝洪柟绋款煼楠炲繘宕ㄧ€涙ɑ鍎梺鑽ゅ枑婢瑰棝顢曢懖鈺冪=闁稿本鐟︾粊鐗堛亜閺囧棗娲﹂崑瀣煙閹咃紞闁哄棴闄勭换娑橆啅椤旇崵鐩庨梺缁樺笒閻忔岸濡甸崟顖氱鐎广儱顦伴鏍ㄧ箾鐎涙ḿ鐭嬬紒顔芥崌瀵鎮㈤崗鐓庘偓缁樹繆椤栨繃顏犲ù鐘虫綑椤啴濡堕崨顖滅暰闂佸搫鎳忕换鍕i幇鏉跨婵°倓绀佹禍鐟邦渻閵堝棙鈷掗柛妯犲嫭鍙忛柡鍥ュ灪閳锋垿姊婚崼鐔衡姇闁瑰吋鍔欓幃妤€顫濋鐔哄嚒濡炪倖娲╃紞渚€銆佸璺虹劦妞ゆ帒瀚弰銉╂煃瑜滈崜姘跺Φ閸曨垰绠抽柟瀛樼箥娴犺偐绱掗悙顒€鍔ゆ繛纭风節瀵鈽夐姀鐘电杸濡炪倖鐗楀銊バ掗姀銈嗏拺闁告繂瀚敍鏃傜磼閻樿櫕宕岀€殿喖顭峰鎾偄妞嬪海鐛梻浣稿閸嬪懐鎹㈤崒娑欏弿濠㈣埖鍔栭埛鎴︽偠濞戞巻鍋撻崗鍛棜婵犵數鍋涢顓熸叏閹绢噮鏁勯柛鈩冪⊕閸嬪倿鏌i弬鍨倯闁绘挻鐟╁娲敇閵娧呮殸婵犫拃灞芥灓缂佽鲸甯¢幃顏勨枎韫囨搩浠存繛瀛樼矋缁捇寮婚弴鐔虹彾妞ゆ牗鑹鹃弳鏇熶繆閸欏濮嶆慨濠呮閹风娀鍨鹃搹顐や簽缂傚倷绶¢崰妤呮偡閳哄懎违濞达絿纭跺Σ鍫熶繆椤栨艾妲婚柣妤佸哺濮婃椽宕ㄦ繝鍌氼棃闂佸憡娲栭悘姘辩礊濡も偓閳规垿鎮╅崹顐f瘎婵犳鍠氶崗姗€濡撮崒娑氼浄閻庯綆浜為崝锕€顪冮妶鍡楀潑闁稿鎸鹃惀顏嗙磼閵忕姴绫嶉悗瑙勬礃濡炰粙寮幇鏉垮耿闁归偊浜為惄搴ㄦ⒒娓氣偓濞佳呮崲閸℃稑绀堟繝闈涚墢閻棝鎮楅敐搴℃灍闁绘挻绋戦湁闁挎繂姣ヨぐ鎺戠劦妞ゆ巻鍋撴繛纭风節閻涱噣宕橀鑲╊槶閻熸粌鑻埢浠嬵敂閸喓鍙冨┑鈽嗗灟鐠€锕€危閻戞ǜ浜滈柡鍌涘閸犳ɑ鎱ㄦ繝鍌ょ吋鐎规洘甯掗~婵嬵敄閽樺澹曢梺缁樺灱婵倝宕甸崟顖涚厾闁告縿鍎查弳鈺伱归悩鍐插摵婵﹦绮幏鍛村川婵犲啫鍓甸梻浣虹帛椤ㄥ棛鍒掗幘宕囨殾婵犲﹤鍟犲Σ鍫熸叏濮楀棗澧柣蹇擄工閳规垿鎮欓崣澶樻!闂佸湱枪閹芥粎鍒掔紒妯肩瘈婵﹩鍘兼禒顖炴⒑閹肩偛鍔村ù婊勭矒閹啫煤椤忓懐鍘介梺闈涚墕閹冲繘宕板Ο缁樺弿濠电姴鎳忛鐘绘煕閺嶃劎澧电€殿喗鎸抽幃娆徝圭€n偄鐝堕梻鍌氬€峰ù鍥х暦閻㈢ǹ闂柨鏂垮⒔娑撳秹鏌熼幆褏锛嶉柡鍡畵閺岀喐娼忛崜褏鏆犻梺鍛婂姀閸嬫捇姊绘笟鈧ḿ褑鍣归梺鍛婄矆缁€渚€寮查銏♀拻闁稿本鐟ㄩ崗宀€鐥鐐靛煟鐎规洘绮岄埞鎴炵節閸愨晛娅¢梻鍌欐祰椤曆呮崲閹邦喗宕查悗锝庡枛绾偓闂佽鍎煎Λ鍕嫅閻斿吋鐓ユ繝闈涙-濡插摜绱掗悩宸吋闁诡喗顨呴埥澶娾枎鐎n剛绐楁俊鐐€х拹鐔煎礉瀹ュ洦宕叉繛鎴欏灪閺呮煡鏌涘☉鍗炴灍闁诡喗鐟╁娲箰鎼淬垹顦╂繛瀛樼矤娴滎亝淇婄€涙ɑ濯寸紒顖涙礃椤秴鈹戦埥鍡楃仸闁衡偓闁秵鍊靛┑鐘崇閳锋垿鏌涢敂璇插箹闁告柨顑囩槐鎺旀嫚閹绘巻鍋撶憴鍕攳濠电姴娲ょ粻顕€鏌ら幁鎺戝姉闁归绮换娑欐綇閸撗冨煂闂佺娅曢悷鈺佺暦閻戠瓔鏁囨繛鎴灻兼竟鏇炩攽閻愭潙鐏﹂悽顖涱殔閳诲秵绻濋崟銊ヤ壕閻熸瑥瀚粈鈧紓鍌氱Т閿曘倝鎮鹃悜鑺ュ€荤紒娑橆儐閺咃綁姊虹紒妯荤;闁绘帪濡囩槐鐐参旈崨顔规嫽婵炶揪绲块悺鏂酷缚閹邦喒鍋撶憴鍕闁挎洏鍨介妴浣割潩閹颁焦鞋濠电姰鍨奸~澶娒洪悢椋庢殾婵°倕鎳庣粈鍌炴煟閹炬娊顎楀ù鐓庡缁绘繄鍠婂Ο娲绘綉闂佹悶鍔嬮崡鎶界嵁閺嶎収鏁冮柨鏇楀亾缂佺姵鐗犻弻鐔衡偓娑櫳戦崕鏇㈡煛閸愩劎澧曠紒顐㈢Ч閺屾盯顢曢妶鍛瘣闂佸綊顥撶划顖滄崲濞戙垹绠婚柡澶嬪灩閸斾即姊虹粙娆惧剱闁圭懓娲璇差吋閸偅顎囬梻浣告啞閹稿鎯勯姘辨殾闁瑰瓨绺惧Σ鍫ユ煏韫囧ň鍋撻搹顐悈濠碉紕鍋戦崐鏍偋濡ゅ啰鐭欓柟鐑樺灍閺嬪秹鏌eΟ鑲╁笡闁稿﹤鐏氱换娑㈠箣閻愬灚鍠楃紓鍌氬€瑰銊ф閹烘鍋愰柛鎰絻婵垽姊婚崶褜妯€闁哄被鍔岄埞鎴﹀幢濡儤顏犻梻浣告惈濡繃绂嶉崼鏇炶摕婵炴垶锕╁ḿ鈺傘亜閹烘柡鎷″ù婊庝邯瀹曟椽濡烽敃鈧欢鐐测攽閻愵亜鐏柛鐘崇墵瀵濡歌閸嬫捇鏁愰崨顖欑驳缂傚倸绉撮惌鍌氼潖婵犳艾纾兼繛鍡樺灩閻涖垹鈹戦悙鏉垮皟闁告侗鍠栨惔濠囨⒑缁洖澧茬紒瀣灴閹偤宕归鐘辩盎闂佺懓鎼Λ妤佺妤e啯鈷戦柛娑橆焵閹达附鍋嬮柣妯垮皺閺嗭附绻涢崱妯诲鞍闁搞倕绉归弻鏇熺珶椤栨碍鍣芥俊鎻掓喘濮婄粯鎷呴崷顓熻弴闂佹悶鍔忓Λ鍕幓閼愁垼妲婚梺鐑╂閸欏啫顫忕紒妯诲闁荤喖鍋婇崵瀣攽閻愭潙绲荤紒缁樏悾鐑藉箛椤戣姤鏂€闁诲函缍嗘禍鐐烘偩濞差亝鍋℃繝濠傚暞閹癸綁鏌熼獮鍨仼闁宠鍨归埀顒婄秵娴滅偤宕愰悙鐑樺仭婵犲﹤鍟扮粻鑽も偓娈垮枟濡叉帡藝閸欏浜滄い蹇撳閺嗭絽鈹戦垾宕囧煟鐎规洖宕灃闁告劦浜濋崳顖炴⒒娴g瓔鍤欓悗娑掓櫊瀹曟瑨銇愰幒鎴犵厬闂佸憡鍔﹂崰鏍不閺嶎厽鐓ラ柣鏂挎惈瀛濋柛鐑嗗灦濮婃椽宕橀崣澶嬪創闂佺ǹ锕ら…宄扮暦閵忥紕顩烽悗锝庡亐閹锋椽姊洪崨濠勭畵閻庢凹鍘奸蹇撯攽鐎n偆鍘遍柣搴秵閸嬪棗煤閹绢喗鐓曢柍瑙勫劤娴滅偓淇婇悙顏勨偓鏍ь啅婵犳艾纾婚柟鎯ь嚟缁♀偓闂侀€炲苯澧撮柡灞芥椤撳ジ宕ㄩ姘曞┑锛勫亼閸婃牜鏁繝鍥ㄥ殑闁割偅娲栭悿顕€鏌$仦璇插姕闁绘挻鐟╅弻娑㈠箣濞嗗繆鍋撻弽顐熷亾濮樼偓瀚�
Ksh. Newton Singh 1,
, Ravindra K. Bisht 2,
, S. K. Maurya 3,
, Neeraj Pant 4,
, 1.Department of Physics, National Defence Academy, Khadakwasla, Pune- 411023, India and Department of Mathematics, Jadavpur University, Kolkata- 700032, India
2.Department of Mathematics, National Defence Academy, Khadakwasla, Pune- 411023, India
3.Department of Mathematical and Physical Sciences, College of Arts and Science, University of Nizwa, Nizwa, Sultanate of Oman
4.Department of Mathematics, National Defence Academy, Khadakwasla, Pune- 411023, India
Received Date:2019-07-22
Accepted Date:2019-12-06
Available Online:2020-03-01
Abstract:We explore a new relativistic anisotropic solution of the Einstein field equations for compact stars based on embedding class one condition. For this purpose, we use the embedding class one methodology by employing the Karmarkar condition. Employing this methodology, we obtain a particular differential equation that connects both the gravitational potentials ${\rm e}^{\lambda}$ and ${\rm e}^{\nu}$. We solve this particular differential equation choosing a simple form of generalized gravitational potential $g_{rr}$ to describe a complete structure of the space-time within the stellar configuration. After determining this space-time geometry for the stellar models, we discuss thermodynamical observables including radial and tangential pressures, matter density, red-shift, velocity of sound, etc., in the stellar models. We also perform a complete graphical analysis, which shows that our models satisfy all the physical and mathematical requirements of ultra-high dense collapsed structures. Further, we discuss the moment of inertia and M-R curve for rotating and non-rotating stars.

HTML

--> --> -->
1.Introduction
The existence of anisotropy inside a compact star plays an essential role in the modeling of a relativistic stellar configuration. The well-known work on anisotropy was initiated by Bowers and Liang [1] and Herrera and Santos [2], where they showed the effect of anisotropy on the self-gravitating system. Dev and Gleiser [3,4] showed that the pressure anisotropy introduces an effect on the mass, structure, and other physical phenomena of highly dense compact stars. Moreover, the anisotropy influences the red-shift of the compact objects. In view of Ruderman [5], compact objects with a high density of order >1015 g/cm3 pressure anisotropy is the underlying nature of the atomic substance, and their interactions are relativistic. In this connection, some other important studies on the anisotropic stellar models are presented in Refs. [6-14]. Normally, anisotropy arises due to the occurrence of different types, viz., a mixture of fluids, rotation, survival of superfluid, phase transitions, existence of magnetic or external field, etc. Recently, significant efforts were made by researchers in the modeling of observed astrophysical objects for the anisotropic matter configuration. Further, some important physical features of the anisotropic star have been discussed in some recent works of Maurya et al. [15-17], Sharma and Ratanpal [18], Ngubelanga et al. [19], Murad and Fatema [20], and the references therein. The physical analyses contained in these studies show that the presence of nonzero anisotropy plays an important role in modeling astrophysical stellar models. Moreover, Malaver [21,22] discussed compact star models for strange quark matter in general relativity by taking linear and quadratic equation of states. The conformal symmetry of relativistic compact star objects has been proposed by numerous authors [12, 23-29].
To discuss any astrophysical relativistic compact objects, it is important to find an exact solution of the system of the Einstein field equations. Delgaty and Lake [30] gave a detailed survey of many exact solutions of the Einstein field equations, which had been obtained over the last century. They argued that only a few of them satisfy the physical and mathematical requirements for a realistic stellar object in general relativity. The solution of the Einstein field equations is known to be a difficult task due to its nonlinear nature. Therefore, to develop a physically realistic consistent stellar model, either we restrict the space-time geometry by classifying an equation of state, or apply various other approaches. In this connection, we employed an embedding approach to tackle this system of field equations. From the many past years, the embedding approach maintains great interest among the researchers [3142]. By employing this embedding theory, we may link the classical general theory of relativity to the higher dimensional flat space-time that describes the inner symmetry group characteristic of the particles. Romero and his collaborators [43,44] have linked the different manifolds like the vacuum 5D manifold to the 4D manifold, 4D field equation in vacuum to 3D field equation, and the 4D Einstein equations are embedded in a 5D Ricci-flat space-time using Campbell's theorem [45]. This theory provides the algebraic explanations of the membrane theory and convinced matter theory. Here, it is worth mentioning that $ m $ dimensional manifold $ V_{m} $ can always be embedded into the n-dimensional pseudo-Euclidean space $ E_{n} $, where $ n = m(m+1)/2 $. This least additional dimension $ p $ of the pseudo-Euclidean space is referred to as the embedding class of the manifold $ V_{m} $ that must be less than or equal to the value $ (n-m) = m(m-1)/2 $. For example, the 4-dimensional relativistic space $ V_{4} $ time can be embedded in flat space-time of dimension 10. In this case, the embedding class of $ V_{4} $ is 6. In contrast, the class of plane symmetric is three, while the spherically symmetric space-time and Schwarzschild's exterior solution [46] both are of class two. Moreover, the well-known Friedman-Robertson-Lemaitre [47-49] space-time and Schwarzschild's interior solution are of class one [50].
In this study, we apply Karamarkar's condition to obtain relativistic anisotropic stellar models of the Einstein field equations for the spherically symmetric line element. We derive a particular differential equation (known as class one condition) using the Karamarkar condition that connects both the gravitational potentials $ \nu $ and $ \lambda $. We solve this equation by taking a particular form of an ansatz for the gravitational potential $ \lambda $. After that, we perform physical analysis of the solution, which describes realistic anisotropic stellar compact objects. The article is organized as follows: We begin with Sec. 2, which includes spherically symmetric interior space-time and the Einstein field equations for anisotropic matter distribution. We also mention the non-vanishing components for the Riemannian tensor along with the embedding class one condition for the spherically symmetric metric line element. In Sec. 3, we obtain a generalized solution for anisotropic compact star model by solving the class one condition. The expressions for pressures, density, and anisotropy are also given in the same section. In Sec. 4, we determine all the necessary constant parameters by matching our considered interior space-time to the exterior space-time (Schwarzscild metric). The non-singular nature of pressures, density, and bounds of the constant are given in Sec. 5. Some of the important features of compact star models like velocity of sound, adiabatic index, Tolman-Oppenheimer-Volkoff equation equilibrium condition, stability through the Harrison-Zeldovich-Novikov criterion, and Herrera cracking concept are covered in the same section. In Sec. 6, we discuss the slow rotation approximation, moment of inertia, and Kepler's frequency and energy conditions. The obtained results have been reported in Sec. 7 with necessary discussions. In the final section, we provide the generators for this particular class of solutions.
2.Einstein field equations
The interior of the super-dense star is assumed to be described by the line element
$ {\rm d}s^2 = {\rm e}^{\nu(r)}{\rm d}t^2 - {\rm e}^{\lambda(r)}{\rm d}r^2 - r^2({\rm d}\theta^2 + \sin^2{\theta} \; {\rm d}\phi^2). $
(1)
For our model, the energy-momentum tensor for the stellar fluid is
$ T_{\alpha \beta} = (\rho+p_t)v_\alpha v_\beta-p_t g_{\alpha \beta}+(p_r-p_t) \chi_\alpha \chi_\beta. $
(2)
Here, all the symbols have usual meanings with $ v_\alpha v^\alpha = -1 = -\chi_\alpha \chi^\alpha \; \; {\rm{and}}\; \; v_\alpha \chi^\alpha = 0 $.
The Einstein field equations for the line element (1) are
$ 8\pi \rho = \frac{1 - {\rm e}^{-\lambda}}{r^2} + \frac{\lambda'{\rm e}^{-\lambda}}{r} , $
(3)
$ 8\pi p_r = \frac{\nu' {\rm e}^{-\lambda}}{r} - \frac{1 - {\rm e}^{-\lambda}}{r^2} , $
(4)
$ 8\pi p_t = \frac{{\rm e}^{-\lambda}}{4}\left[2\nu'' + {\nu'}^2 - \nu'\lambda' + \frac{2(\nu'-\lambda')}{r}\right], $
(5)
where primes (' and '') denote the first and second derivatives w.r.t. the radial coordinate $ r $. We use the geometrized units $ G = c = 1 $ throughout the study. Using Eq. (4) and (5), we get
$ \Delta = 8\pi (p_t-p_r) \\ = {\rm e}^{-\lambda}\left[{\nu'' \over 2}-{\lambda' \nu' \over 4}+{\nu'^2 \over 4}-{\nu'+\lambda' \over 2r}+{{\rm e}^\lambda-1 \over r^2}\right]. $
(6)
To solve Eqs. (3)–(5), we adopted the method of embedding class one, where $ {\rm e}^\nu $ and $ {\rm e}^\lambda $ are linked via the Karmarkar condition [51] as
$ {\lambda' \nu' \over 1-{\rm e}^\lambda} = \lambda' \nu'-2(\nu''+\nu'^2)+\nu'^2. $
(7)
The solutions of Eq. (7) are of class one so long as they satisfy the Pandey-Sharma condition [52]. Upon integrating, we obtain
$ {\rm e}^\nu = \left( A+B \int \sqrt{{\rm e}^\lambda-1} \; {\rm d}r \right)^2. $
(8)
Using the reduced form of Karmarkar condition (8), the expression of anisotropy given in (6) can be reduced to a simpler form [53] as,
$ \Delta = {\nu' \over 4{\rm e}^\lambda}\left[{2\over r}-{\lambda' \over {\rm e}^\lambda-1}\right]\; \left[{\nu' {\rm e}^\nu \over 2rB^2}-1\right]. $
(9)
For the isotropic case, the first solution $ \nu = 0 $ or $ \nu = {\rm const}. $ and $ {\rm e}^\lambda = 1 $ is not a physically relevant solution. The second solution can be found by equating the second factor of Eq. (9), i.e.,
$ {2\over r}-{\lambda' \over {\rm e}^\lambda-1} = 0 $
(10)
and the solution is found as
$ {\rm e}^{-\lambda} = 1-cr^2 . $
(11)
Using Eq. (11) in Eq. (8), we obtain
$ {\rm e}^\nu = \left(A-{B \over \sqrt{c}} \sqrt{1-cr^2}\right)^2. $
(12)
This solution is the well-known interior Schwarzschild's uniform density model ($ c $ is constant of integration). If the the third factor in (9) vanishes, i.e.,
$ {\nu' {\rm e}^\nu \over 2rB^2}-1 = 0, $
(13)
then the corresponding solution is
$ {\rm e}^{\nu} = A+B r^2 \; \; {\rm{and}} \; \; {\rm e}^{\lambda} = {A+2Br^2 \over A+Br^2}. $
(14)
This is the Kohler-Chao solution with boundary at infinity. Both the solutions are physically irrelevant from astrophysical points of view, as one leads to the constant density model, and the other yields the infinite boundary model. With the inclusion of net electric charge and anisotropy, one can generate many physically inspired solutions.
3.A new physical solution
In this model, we assume the following metric potential $ g_{rr} $ consisting of a class of hyperbolic function
$ {\rm e}^{\lambda} = 1+ a r^2 \bigg\{1+ \cosh \left(b r^2+c\right)\bigg\}^n. $
(15)
In the above equation the constant parameters $ a,\; b $, and $ c $ are positive, and $ n $ should be a negative integer or otherwise the physical values are complex except density. We choose $ {\rm e}^{\lambda(r)} $ such that $ {\rm e}^{\lambda(0)} = 1 $, which infers that the tangent three space is flat at the center, and the Einstein field equations can be solved for a physically acceptable solution.
The metric potential $ g_{tt} $ is found using Eq. (7) and given by
$ {\rm e}^{\nu} = \left(A-\frac{ f(r) B \sqrt{a \left[\cosh \left(b r^2+c\right)+1)\right]^n}}{b (n+1) \sqrt{2-2 \cosh \left(b r^2+c\right)}}\right)^2, $
(16)
where $ A $ and $ B $ are constants of integration and
$ \begin{split} f(r) = & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right] \\& \sinh \left(b r^2+c\right). \end{split} $
(17)
The variations of the two metric functions are shown in Fig. 1. For $ n = -2 $ to $ n = -18 $ the behavior of metric function changes slightly.
Figure1. (color online) Variation of metric functions for neutron star in Vela X-1 with parameters $n = -2$ to $ -18,\; b = 0.001/{\rm{km}}^2,$ $ c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Using metric potentials given in Eq. (15) and (16), the expressions of $ \rho, p_r, \Delta $, and $ p_t $ can be calculated as
$ p_r = \frac{f_2(r) \sqrt{a \left[\cosh \left(b r^2+c\right)+1\right]^n}}{8 \pi f_1(r) \left(a r^2 \left(\cosh \left(b r^2+c\right)+1\right)^n+1\right)}, $
(18)
$\begin{split} \rho = & \frac{a \left[\cosh \left(b r^2+c\right)+1\right]^{n-1}}{8 \pi \left[a r^2 \left\{\cosh \left(b r^2+c\right)+1\right\}^n+1\right]^2} \\ &\times\Big[a r^2 \left\{\cosh \left(b r^2+c\right)+1\right\}^{n+1} \\ & +2 b n r^2 \sinh \left(b r^2+c\right)+3 \cosh \left(b r^2+c\right)+3\Big], \end{split} $
(19)
$\begin{split} \Delta = & \frac{r f_3(r) \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n} }{f_4(r) \left[\cosh \left(b r^2+c\right)+1\right]} \\& \times {b n \sinh \left(b r^2+c\right)-a \left[\cosh \left(b r^2+c\right)+1\right]^{n+1} \over \left[a r^2 \left\{\cosh \left(b r^2+c\right)+1\right\}^n+1\right]^2}, \\ p_t =& p_r + \frac{\Delta}{8 \pi}. \end{split} $
(20)
The variations of pressures, density, anisotropy, equation of state parameters, $ {\rm d}\rho/{\rm d}r,\; {\rm d}p_r/{\rm d}r $, and $ {\rm d}p_t/{\rm d}r $ are shown in Figs. 26. As values of $ n $ increase the central density, anisotropy, adiabatic index decrease, however, the pressures, equation of state parameters and speed of sounds decrease.
Figure2. (color online) Variation of pressures for neutron star in Vela X-1 with parameters $n = -2$ to $ -18,\; b = 0.001/{\rm{km}}^2,$ $ c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}$. Here, $\delta n$ is the increment in $n$ while ploting the graph.

Figure3. (color online) Variation of density for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2,$ $\; c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Figure4. (color online) Variation of pressure anisotropy for neutron star in Vela X-1 with parameters $n = -2$ to $ -18,\; b = 0.001/{\rm{km}}^2,$ $c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Figure5. (color online) Variation of pressure and density gradients for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Figure6. (color online) Variation of equation of state parameters for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

where,
$\begin{split} f_1(r) =& 2 A b (n+1) r \sqrt{1-\cosh \left(b r^2+c\right)}-\sqrt{2} B \\ &\sinh \left(b r^2+c\right)\sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n} \\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right] \\ f_2(r) = & 2 b (n+1) \sqrt{1-\cosh \left(b r^2+c\right)} \Big(2 B r-A\\ &\sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n}\Big) +\sqrt{2} a B r \\ & \sinh \left(b r^2+c\right) \left[\cosh \left(b r^2+c\right)+1\right]^n \, \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right] \\ f_3(r) = & 2 b (n+1) \sqrt{1-\cosh \left(b r^2+c\right)} \Big(B r -A\\ & \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n}\Big) +\sqrt{2} a B r \end{split} $
$\begin{split} &\sinh \left(b r^2+c\right) \left[\cosh \left(b r^2+c\right)+1\right]^n \,\\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right]\\ f_4(r) = & 2 A b (n+1) r \sqrt{1-\cosh \left(b r^2+c\right)} -\sqrt{2} B\\& \sinh \left(b r^2+c\right) \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n} \, \\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right]. \end{split} $

4.Matching of interior and exterior spacetime
Assuming the exterior spacetime to be the Schwarzschild solution, which has to match smoothly with our interior solution and is given by
$ \begin{split} {\rm d}s^2 = \left(1-{2M\over r}\right) {\rm d}t^2-\left(1-{2M\over r}\right)^{-1}{\rm d}r^2 -r^2({\rm d}\theta^2+\sin^2 \theta \; {\rm d}\phi^2). \end{split} $
(21)
By matching the first and second fundamental forms the interior solution of Eq. (1) and exterior solution of Eq. (21) at the boundary $ r = R $ (Darmois-Israel condition [54,55]) we get
$\begin{split} {\rm e}^{\nu_b/2} =& 1-{2M \over R} \\=& A-\frac{ f(R) B \sqrt{a {^2} \left[\cosh \left(b R^2+c\right)+1)\right]^n}}{b (n+1)\sqrt{2-2 \cosh \left(b R^2+c\right)}}, \end{split} $
(22)
$\begin{split} {\rm e}^{-\lambda_b} = &1-{2M \over R} \\ &= \Bigg[1+ a R^2 \big\{1+ \cosh \left(b R^2+c\right)\big\}^n \Bigg]^{-1}, \end{split} $
(23)
$ p_r(R) = 0. $
(24)
Using the boundary conditions (22–24), we get
$ a = \frac{2 M \left[\cosh \left(b R^2+c\right)+1\right]^{-n}}{R^2 (R-2 M)} , $
(25)
$ A = \frac{B \left[\cosh \left(b R^2+c\right)+1\right]^{-n/2}}{2 \sqrt{a} b (n+1) \sqrt{1-\cosh \left(b R^2+c\right)}}, $
(26)
$\begin{split} B = & \frac{\sqrt{a}}{2} \sqrt{1-\frac{2 M}{R}} \Big[\cosh \left(b R^2+c\right)+1\Big]^{n/2} \\ &\times \Bigg[\sqrt{2} a \sinh \left(b R^2+c\right) \left[\cosh \left(b R^2+c\right)+1\right]^n \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b R^2+c}{2}\right)\right] \\ &+4 b (n+1) \sqrt{1-\cosh \left(b R^2+c\right)} \Bigg]. \end{split} $
(27)

5.Properties of a new class of solution
The central pressure and density at the interior are given by
$ \begin{split} 8\pi p_r(0) = & 8\pi p_t(0) = \Bigg\{\sqrt{2} a B \sinh c \left(\cosh c +1\right)^n \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{c}{2}\right)\right]\Bigg\} \\ &\Bigg\{8 \pi \Big (\sqrt{2} B \sinh c \sqrt{a \left(\cosh c + 1\right)^n}\\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{c}{2}\right)\right] \\ &-2 A b (n+1) \sqrt{1-\cosh c}\Big)\Bigg\}^{-1}>0, \end{split} $
(28)
$ \rho(0) = \frac{3a \left(\cosh c +1\right)^{n-1} \left(\cosh c + 1\right)}{8\pi}>0. $
(29)
The finite central values of the above parameters ensure that the solution is non-singular. The Zeldovich's condition, i.e., $ p_r/\rho $ at center is $ \leqslant 1 $, which is a prerequisite for physical matters.
2
5.1.Velocity of sound and adiabatic index
-->

5.1.Velocity of sound and adiabatic index

The velocity of sound inside the stellar interior can be determined using
$ v_r^2 = {{\rm d}p_r/{\rm d}r \over {\rm d}\rho/{\rm d}r},\; \; \; v_t ^2 = {{\rm d}p_t/{\rm d}r \over {\rm d}\rho/{\rm d}r}. $
(30)
For a stable configuration, the stability factor $ v_t^2-v_r^2 $ should lie between 0 and –1 [56,57]. Variations of sound speed and stability factor are shown in Figs. 7 and 8, respectively. The figures depict that the class of solution satisfy the causality condition and stability criterion. If $ n = 0 $, some parts of the stability factor becomes positive and hence introduces instability in the model. However, for $ n $ beyond –18, the stability factor seems stable.
Figure7. (color online) Variation of velocities of sound for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2, $ $ c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Figure8. (color online) Variation of stability factor for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2, $ $ c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

The relativistic adiabatic index is given by
$ \Gamma = {\rho+p_r \over p_r}\; {{\rm d}p_r \over {\rm d}\rho}. $
(31)
For a static configuration at equilibrium, $ \Gamma $ has to be more than 4/3 [58]. Figure 9 shows that the adiabatic index is >4/3.
Figure9. (color online) Variation of adiabatic index for neutron star in Vela X-1 with parameters $n = -2$ to $ -18,\; b = 0.001/{\rm{km}}^2,$ $ c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

2
5.2.Equilibrium via modified Tolman-Oppenheimer-Volkoff (TOV) equation
-->

5.2.Equilibrium via modified Tolman-Oppenheimer-Volkoff (TOV) equation

The modified Tolman-Oppenheimer-Volkoff (TOV) equation for anisotropic fluid distribution was given by [59] as
$ -{M_g(\rho+p_r) \over r^2}\; {\rm e}^{(\lambda-\nu)/2}-{{\rm d}p_r \over {\rm d}r}+{2\Delta \over r} = 0, $
(32)
provided,
$ M_g(r) = {1\over 2}\; r^2 \nu' {\rm e}^{(\nu-\lambda)/2}. $
(33)
The above Eq. (32) can be written in terms of balanced force equation due to anisotropy ($ F_a $), gravity ($ F_g $) and hydrostatic ($ F_h $), i.e.,
$ F_g+F_h+F_a = 0. $
(34)
Here
$ F_g = -{M_g(\rho+p_r) \over r^2}\; {\rm e}^{(\lambda-\nu)/2}, $
(35)
$ F_h = -{{\rm d}p_r \over {\rm d}r}, $
(36)
$ F_a = {2\Delta \over r}. $
(37)
The TOV Eq. (34) is plotted in Fig. 10, which shows that all the three forces counter-balance each other. As $ n $ decreases from –2 to –18, the peak of the $ F_g $ increases, $ F_h $ is almost same from the center up to about 4 km and show significant increment up to the surface. However, $ F_a $ decreases as $ n $ approaches –18.
Figure10. (color online) Variation of forces acting on system via TOV-equation for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001, $ $ M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

2
5.3.Stability Harrison-Zeldovich-Novikov criterion
-->

5.3.Stability Harrison-Zeldovich-Novikov criterion

The satisfaction of the static stability criterion ensures that the solution is static and stable. This was proposed independently by Harrison et al. [60] and Zeldovich-Novikov [61]. According to this criterion, the mass of compact stars must be an increasing function of its central density, i.e., $ {\rm d}M/{\rm d}\rho_c >0 $.
For this class of solution, mass as a function of central density can be written as
$ M(\rho_c) = \frac{4 \pi r^3 \rho _c \left[\cosh \left(b R^2+c\right)+1\right]^n}{8 \pi R^2 \rho _c \left[\cosh \left(b R^2+c\right)+1\right]^n+3 (\cosh c+1)^n}, \\ $
(38)
$ \begin{split} {\partial M \over \partial \rho_c} =& \frac{12 \pi R^3 \left[\cosh \left(b R^2+c\right)+1\right]^n}{(\cosh c+1)^{-n}} \bigg[3 (\cosh c+1)^n \\& +8 \pi R^2 \rho _c \left\{\cosh \left(b R^2+c\right)+1\right\}^n\bigg]^{-2} >0. \end{split} $
(39)
Referring to Fig. 11, we see that the class of solution fulfills this criterion.
Figure11. (color online) Variation of mass with central density for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2$ and $R = 9.56\;{\rm{km}}.$

Now, the gravitational red-shift is given by
$ \begin{split} z (r) = & {\rm e}^{-\nu/2}-1 \\ =& \Bigg[-\frac{ f(r) B \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1)\right]^n}}{b (n+1) r \sqrt{2-2 \cosh \left(b r^2+c\right)}}+ A \Bigg]^{-1} - 1. \end{split} $
(40)
The variation of red-shift is shown in Fig. 12.
Figure12. (color online) Variation of red-shift for neutron star in Vela X-1 with parameters $n = -2$ to -18, $ b = 0.001/{\rm{km}}^2,\; c = 0.0001, $ $ M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

2
5.4.Maximum allowable mass and compactness factor
-->

5.4.Maximum allowable mass and compactness factor

The mass function and compactness factor of the solution can be determined using the equations given below:
$\begin{split} m(r) = & \int_0^r 4\pi\rho(r)\; r^2 \; {\rm d}r \\ =& \frac{a r^3 \left[\cosh \left(b r^2+c\right)+1\right]^n}{2 a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n+2}, \end{split}$
(41)
$ \begin{split} u(r) = & \frac{2 m(r)}{r} \\ =& \frac{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n}{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n+1}. \end{split} $
(42)
The surface red-shift can be found as
$ z_s = {\rm e}^{\lambda_b/2}-1 = (1-u_b)^{-1/2}-1. $
(43)
Using the Buchdahl limit, i.e., $ u = 8/9 $, we obtain the maximum surface redshift $ z_s({\rm max}) = 2 $. When the compactness parameter is zero, the surface red-shift is likewise zero. As the compactness parameter reaches the Buchdahl limit, i.e., $ u = 8/9 $, the surface red-shift becomes exactly two. However, if the compactness parameter is beyond the Buchdahl limit, then because of the formation of singularity, the surface red-shift blows up. However, Ivanov [62] has derived that for a realistic anisotropic star models the surface red-shift $ Z_s $ cannot go beyond to 5.211 (this value corresponds to a model without the cosmological constant).
6.Slow rotation approximation, moment of inertia, and Kepler frequency
For a uniformly rotating star with angular velocity $ \Omega $, the moment of inertia is given by
$ I = {8\pi \over 3} \int_0^R r^4 (\rho+p_r) {\rm e}^{(\lambda-\nu)/2} \; {\omega \over \Omega}\; {\rm d}r $
(44)
where the rotational drag $ \omega $ satisfies the Hartle's equation
$ {{\rm d} \over {\rm d}r} \left(r^4 j \; {{\rm d}\omega \over {\rm d}r} \right) = -4r^3\omega\; {{\rm d}j \over {\rm d}r} $
(45)
with $ j = {\rm e}^{-(\lambda+\nu)/2} $, which has boundary value $ j(R) = 1 $. The approximate solution of the moment of inertia $ I $ up to the maximum mass $ M_{\rm max} $ is provided by Bejger and Haensel [63] as
$ I = {2 \over 5} \Big(1+x\Big) {MR^2}, $
(46)
where parameter $ x = (M/R)\cdot {\rm km}/M_\odot $. For this class of solution, we plotted the mass vs. $ I $ in Fig. 15 that shows as $ n $ increases, the mass also increases, while the moment of inertia increases up to certain value of mass and subsequently decreases. Comparing Figs. 13 and 15, we see that the mass corresponding to $ I_{\rm max} $ is not equal to $ M_{\rm max} $ from the $ M-R $ diagram. In fact, the mass corresponding to $ I_{\rm max} $ is lower by ~1.46% from the $ M_{\rm max} $. This happens to the equation of states without any strong high-density softening due to hyperonization or phase transition to an exotic state [64]. Using this graph, we can estimate that the maximum moment of inertia for a particular compact star or by matching the observed $ I $ with the $ I_{\rm max} $, we can determine the validity of a model. The causality of the maximum mass in Fig. 13, especially the star for $ 2.529M_\odot $ and 12 km is verified from the behaviour of velocity of sound in Fig. 14.
Figure13. (color online) Variation of mass with radius for $a = 0.01, \; b = 0.001$ and $c = 0.0001.$

Figure15. (color online) Variation of moment of inertia with mass for $n = -2$ to $n = -3$ taking $a = 0.01 /{\rm{km}}^2,\; $ $ b = 0.001/{\rm{km}}^2,\; c = 0.0001.$

Figure14. (color online) Variation of velocity of sound for $2.529M_\odot$ and 12.8 km.

A rotating compact star can hold higher $ M_{\rm max} $ than a non-rotating one. The mass relationship between a non-rotating and rotating compact star is given in the units ( $ G = C = 1 $ ) and can be written as [65]
$ M_{\rm rot} = M_{\rm non-rot}+{1 \over 2}I\Omega^2. $
(47)
Because of the centrifugal force, the radius at the equator increases up to some factor as compared to the static one. Cheng and Harko [66] found the approximate radii for static and rotating stars as $ R_{\rm rot}/R_{\rm non-rot} \approx 1.626 $, respectively. Assuming the compact star is rotating in the Kepler frequency $ \Omega_K = (GM_{\rm non-rot}/R^3_{\rm non-rot})^{1/2} $ and using the Cheng-Harko formula, we plotted the $ M-R $ graph for rotating and non-rotating stars (Fig. 16). The corresponding frequency of a rotating star can be determined as [67]
Figure16. (color online) Variation of mass with radius for $n = -2$ & $n = -4$ taking $a = 0.01 /{\rm{km}}^2,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001$ for a rotating and non-rotating star.

$ \nu \approx 1.22 \left({R_{\rm non-rot} \over 10 {\rm km}}\right)^{-3/2} \left({M_{\rm non-rot} \over M_\odot}\right)^{1/2}\; {\rm kHz}. $
(48)
The variation of frequency with mass is shown in Fig. 17. This shows that the frequency of rotation corresponds to the maximum mass. In contrast, we like to mention that recently, the direct detection of the gravitational wave (GW) signal $ {\rm GW}1- 70817 $ has been reported by the LIGO-Virgo collaboration from a binary compact star system [68]. New constraints for the tidal deformability of the 1.4 solar mass compact stars ($ \Lambda_{1.4} $) have been estimated as $ \Lambda_{1.4} < 800 $ [69], which can also place constraints on the equation of state (EOS) for the star matter and constrain the parameter sets for phenomenological models. In the studies of Refs. [6971], researchers have used different phenomenological models to calculate the properties of the tidal deformability and the maximum mass of neutron stars or quark stars with the constraints of $ {\rm GW}1- 70817 $, which can provide other alternative methods to constrain the parameter sets in the models.
Figure17. (color online) Variation of rotational frequency with mass for $n = -2$ to $n = -3$ taking $a = 0.01 /{\rm{km}}^2,\; $ $ b = 0.001/{\rm{km}}^2,\; c = 0.0001$ for a rotating and non-rotating star.

2
6.1.Energy conditions
-->

6.1.Energy conditions

Any physical solutions other than those representing exotic matters must fulfill all the energy conditions, i.e., strong, weak, null, and dominant energy conditions, which are stated as follows,
$ {\rm{NEC}} \;\;:\;\; T_{\mu \nu}l^\mu l^\nu \geqslant 0\; {\rm{or}}\; \rho+p_i \geqslant 0 \quad\quad\quad\quad\quad\quad $
(49)
$ {\rm{WEC}} \;\;:\;\; T_{\mu \nu}t^\mu t^\nu \geqslant 0\; {\rm{or}}\; \rho \geqslant 0,\; \rho+p_i \geqslant 0 \quad\quad\quad $
(50)
$ \begin{array}{l} {\rm{SEC}} \;\;:\;\; T_{\mu \nu}t^\mu t^\nu - \dfrac{1}{ 2} T^\lambda_\lambda t^\sigma t_\sigma \geqslant 0 \; {\rm{or}}\; \rho+\displaystyle\sum_i p_i \geqslant 0. \\ {\rm{DEC}} \;\;:\;\; T_{\mu \nu}t^\mu t^\nu \geqslant 0 \; {\rm{or}}\; \rho \geqslant |p_i| \\ \quad\quad\quad\;\;\;\;{\rm{where}}\; T^{\mu \nu}t_\mu \in {\rm{nonspace-like \;vector}}. \end{array} $
(51)
where $ i\equiv ({\rm radial}\; r,\; {\rm transverse} \; t),\; t^\mu $ and $ l^\mu $ are the time-like vector and null vector, respectively.
Because the pressure and density are positive throughout the stellar objects, it is obvious that the energy conditions NEC, WEC, and SEC are satisfied vacuously. We have shown the graphical representation for dominant energy conditions in Figs. 18-20, where it can be observed that our solutions are also valid under dominant energy conditions.
Figure18. (color online) Variation of $\rho +p_r$ for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2, \; $ $c = 0.0001,\;M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Figure19. (color online) Variation of $\rho +p_t$ for neutron star in Vela X-1 with parameters $n = -2$ to $-18,\; b = 0.001/{\rm{km}}^2, \;$ $c = 0.0001,\; M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

Figure20. (color online) Variation of $\rho +p_r+2p_t$ for neutron star in Vela X-1 with parameters $n = -2$ to $ -18,\; b = 0.001/{\rm{km}}^2,$ $c = 0.0001, M = 1.77M_\odot$ and $R = 9.56\;{\rm{km}}.$

n$ a $$ A $$ B $$M \; M_\odot$$ R\;{\rm{ km}}$ $ z_c $$ \rho_c \times 10^{14} $ $ g/cc $ $ \rho_s\times 10^{14} $ $ g/cc $$ p_c\times 10^{34} $ $ {\rm dyne}/{\rm cm}^2 $$ \Gamma_{rc} $
?20.02590.67660.031831.779.560.47710.444.895.311.91
?60.41700.67630.031831.779.560.47810.504.855.221.93
?106.72790.67590.031831.779.560.47910.594.815.131.95
?14108.550.67560.031831.779.560.48010.684.765.041.98
?181751.40.67530.031831.779.560.48110.774.714.942.00


Table1.Central and surface values of some parameters for different values of $ n .$

7.Results and conclusion
A new family of non-singular solutions of the Einstein field equations for compact stars under embedding class one condition is presented. The thermodynamical quantities for stellar matter like anisotropic pressures, baryon density, red-shift, and the velocity of sound have been investigated using the Karmarkar condition of embedding class one spacetime.
Based on various physical analyses, such as the equilibrium condition (TOV-equation), static stability criterion ($ \partial M/\partial \rho_c > 0 $), Bondi condition ($ \Gamma_r > 4/3 $), singularity free ($ \rho_c,\; p_{rc} = p_{tc}>0 $), Zeldovich condition ($ p_{rc}/\rho_c < 1 $) and satisfaction of energy conditions, imply that the new family of solutions is possible to represent realistic matter. Therefore, these solutions are suitable to model physical compact stars.
For $ n = 0 $, some parts of the stability factor becomes positive, resulting in instability of the model. However, beyond $ n = -18 $, the stability factor is stable. From Fig. 10, one can observe that as $ n $ decreases from –2 to –18, the peak of the $ F_g $ increases, $ F_h $ is almost same from the center up to about 4 km and shows significant increment till the surface. However, $ F_a $ decreases as $ n $ approaches –18. Using the Buchdahl limit, we obtain the maximum surface red-shift $ z_s({\rm max}) = 2 $. For a zero value of the compactness parameter, the surface red-shift is likewise zero. As the compactness parameter reaches the Buchdahl limit, the surface red-shift becomes exactly two. However, if the compactness parameter is beyond the Buchdahl limit, then because of the formation of singularity the surface red-shift blows up. The unique character of these solutions can be observed from the fact that for a large range of parameter $ n $, the profiles of density, pressures, equation of state parameters, and speed of sounds seem to be different, however, the profiles of the adiabatic index, mass with central density, and red-shift are not very different. This indicates that for modeling compacts, various choices of the equation of state (EoS) can be made for a single compact star. These choices of EoS lead to various structures of interior space-times, however, physical properties like mass, radius, luminosity etc., look the same to an external observer. Fig. 13 shows that smaller values of parameter $ n $ lead to smaller $ M_{\rm max} $ and $ R_{\rm max} $. From Fig. 13, we can see that for $ n = -2 $ the values of ($ M_{\rm max},\; R_{\rm max} $) are (12.8 km, 2.529$ M_\odot $), which is under the theoretical limit proposed by Rhoades and Ruffini [72], while for $ n = -5 $, the values are 6.107 km and 0.1995$ M_\odot $. However, in recent studies, heavy pulsars such as PSR J1614-2230, PSR J0348+0432, and MSR J0740+6620 were discovered [7375], which has set the new record of the maximum mass of the pulsars. Further, from Fig. 7, it is also clear that the values of $ v_r^2 $ and $ v_t^2 $ are at their maximum for $ n = -2 $. Therefore, we conclude that the stiffness of the equation of state decreases as $ n $ decreases. The sensitivity to EoS is sharper in the $ M-I $ graph than $ M-R $, because the peak points in these graphs are sharper in the former graph than the latter. After the complete analysis of solutions with various mathematical and graphical representations, we conclude that the solution is physically reasonable. With the inclusion of a small rotation, we also showed that the maximum mass that can be held by the system increases, and the corresponding radius likewise increases due to the centrifugal force. Larger values of $ n $ yield higher $ M_{\rm max} $. The corresponding frequency of rotation can also be determined using the Haensel et al. formula [67]. In Table 1, we have shown different physical quantities and their corresponding parameters for n=-2 to n=-18.
8.Generating functions
Herrera et al. [76] proposed an algorithm for generating all types of spherically symmetric static solutions using two physical quantities, namely anisotropy and a function related to the redshift. These two generators are respectively defined as
$ \zeta(r) = {\nu'\over 2} +{1 \over r} \; \; \; {\rm{and}} \; \; \; \Pi(r) = 8\pi(p_r - p_t). $
(52)
For this solution, they are found to be
$\begin{split} \zeta(r) = & {1 \over r}+4 b B (n+1) r^2 \sinh ^2\left[\frac{1}{2} \left(b r^2+c\right)\right] \\ &\sqrt{a \left(\cosh \left(b r^2+c\right)+1\right)^n} \Bigg[B \sinh \left(b r^2+c\right) \\ & \sqrt{2-2 \cosh \left(b r^2+c\right)} \sqrt{a r^2 \left(\cosh \left(b r^2+c\right)+1\right)^n} \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{1}{2} \left\{b r^2+c\right\}\right)\right] \\ & +4 A b (n+1) r \sinh ^2\left(\frac{1}{2} \left\{b r^2+c\right\}\right) \Bigg]^{-1},\end{split} $
(53)
$ \Pi(r) = -\Delta (r). \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\;\;\;$
(54)
  S.K. Maurya acknowledges to the administration of the University of Nizwa for their continuous support and encouragement.
相关话题/Static fluid spheres