删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Second to tenth order susceptibilities of conserved charges within a modified Nambu-Jona-Lasinio mod

本站小编 Free考研考试/2022-01-01

Wenkai Fan 1,
, Xiaofeng Luo 2,
, Hongshi Zong 3,
, 1.Kuang Yaming Honors School, Nanjing University, Nanjing 210093, China
2.Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
3.Department of Physics, Nanjing University, Nanjing 210093, China
Received Date:2019-01-23
Available Online:2019-05-01
Abstract:We discuss the sign and energy dependence of second to tenth order susceptibilities of the baryon number, charge number, and strangeness for the analysis of critical conditions in heavy ion collisions in the LHC and RHIC by applying a modified Nambu-Jona-Lasinio model. This model is fitted to the quark condensate of the lattice QCD result at finite temperature and zero baryon chemical potential. The presence of a critical point made these susceptibilities deviate considerably from a Hadron-Resonance-Gas model that shows no criticality. The sign, magnitude, and energy dependence of these higher order fluctuations hint towards the existence and location of a critical point that could be discovered in future heavy ion collision experiments.

HTML

--> --> -->
1.Introduction
Exploring the phase structure of strongly interacting nuclear matter is one of the main objectives of heavy-ion collision experiments. Owing to the asymptotic freedom of QCD, nuclear matter is expected to undergo a phase transition from a phase with hadrons as dominant degrees of freedom to quark-gluon plasma (QGP) [1]. In the chiral limit, the transition is of first-order at vanishing chemical potential. Lattice QCD calculations show that at small baryon chemical potential and high temperature, the transition becomes a smooth crossover [2], whereas a first-order phase transition is expected at high baryon chemical region [3-6]. The end point of the first-order phase boundary towards the crossover region is called the QCD critical end point (CEP) [7]. The fluctuations in the baryon number and electric charge have long been predicted to be sensitive to the phase transition, and they can be used to study the phase structure of strongly interacting nuclear matter. Experimental measurements of the fluctuations of conserved quantities were performed by the beam energy scan (BES) program in the STAR and PHENIX experiments at the Relativistic Heavy-Ion Collider (RHIC). Interestingly, the STAR experiment observed a non-monotonic energy dependence of the fourth order ($ \kappa\sigma^{2} $) net-proton fluctuations in the most central Au + Au collisions [8-15]. Furthermore, this non-monotonic behavior cannot be described by various transport models [16, 17, 12]. To theoretically investigate the contribution of critical point physics to the conserved charge fluctuations and their energy dependence behavior, we have calculated the various fluctuations along the freeze-out line in the QCD phase diagram with a modified Nambu-Jona-Lasinio (NJL) model [18, 19] up to the tenth order. Previous studies have investigated the quantities up to the fourth order [20-26], or made use of the Polyakov-loop improved NJL model [27-29]. Other effective models, like Polyakov-Quark-Meson (PQM) model [30], which calculated baryon fluctuations up to the eighth order exhibit similar qualitative behavior as the NJL model.
In our work, we use a modified three-flavor NJL model, with the four-point coupling being dependent on the quark condensate, as inspired by the operator oroduct expansion (OPE) method [31]. This effectively decreases the coupling strength at higher temperature and the chemical potential, which is more intuitive. Owing to the sign problem of lattice QCD simulation at finite chemical potential, the lattice method is at present limited to a low baryon chemical potential. The conventional NJL model can not match the lattice result at zero chemical potential. However, with the coupling strength depending on the quark condensate, we are able to reproduce the lattice result at finite temperature and $ \mu_B = 0 $. This provides an extension to the finite chemical potential more reliable. The experimentally obtained chemical potential of u, d quarks is almost the same [32]; therefore, we set them to be equal throughout the calculation. The chemical potential of the strange quark is smaller; however, owing to the large mass of the s quark, this does not alter the phase diagram significantly resulting in a small influence on the susceptibilities. Throughout our calculation, we assume that the fire-ball is near thermal equilibrium at freeze-out, although a critical slowing of dynamics would occur if the fire-ball passes the CEP [33, 34]. Additionally, changes in expansion dynamics and interactions can generate variations in particle spectra and acceptance independent of critical phenomena, whose fluctuations must also be monitored [35].
This paper is organized as follows: In Section 2, we introduce the modified NJL model and present its phase diagram. In Section 3 we provide the definition of various quark number susceptibilities. Subsequently, we calculate the various moments and quantities that can be compared with experimental measurements in the next two sections. The sign pattern of these moments reveals a lot of information about the presence and location of the CEP. We show their temperature dependence at $ \mu_B = 0 $ and discuss their similarities and differences with other model results in Section 5. The energy dependence of the baryon moments is given in Section 6. We find that a second peak (further sign changes) occurs along the collision energy axis. Finally, we summarize our work and provide an outlook for future experiments.
2.Modification of the NJL model
We use a Lagrangian density of the NJL model with 2 + 1 flavor:
$\begin{split}{\cal L} =& \bar \psi (i\not\!{\partial} - {m_0})\psi + G[{(\bar \psi {\lambda _i}\psi )^2} + {(\bar \psi i{\gamma _5}{\lambda _i}\psi )^2}]\\& - K({\rm det}[\bar \psi (1 + {\gamma _5})\psi ] + {\rm det}[\bar \psi (1 - {\gamma _5})\psi ]),\end{split}$
(1)
where $ m_0 = {\rm diag}(m_{u0},m_{d0},m_{s0}) $ is the current quark mass matrix. $ \lambda_i $ are the Gell-Mann matrixes, and the determinant is taken in flavor space [19]. At finite temperature and chemical potential, we have one additional term $ \mu \psi^{\dagger}\psi $, where $ \mu $ is the chemical potential matrix.
After performing a mean–field approximation of the Lagrangian in Eq. (1), we obtain the following gap equation and expressions for quark condensate and number density:
$\left\{ \begin{array}{l}{m_i} = {m_{i0}} - 4G\langle {{\bar q}_i}{q_i}\rangle + 2K\langle {{\bar q}_m}{q_m}\rangle \langle {{\bar q}_n}{q_n}\rangle (i \ne m \ne n)\\\langle {{\bar q}_i}{q_i}\rangle = - {m_i}F({m_i},{\mu _i})\\\langle q_i^\dagger {q_i}\rangle = H({m_i},{\mu _i})\end{array} \right.$
(2)
where $ q_i (i = u,d,s) $ are the wave functions of the three quarks, and $ \langle\Theta\rangle = \displaystyle\frac{{\rm Tr} (\Theta e^{-\beta(\mathcal{H}-\mu_i \mathcal{N}_i)})}{{\rm Tr}( e^{-\beta(\mathcal{H}-\mu_i\mathcal{N}_i)})} $ is the grand canonical ensemble average. We define:
$\begin{split}F(m,\mu ) =& \frac{{{N_c}}}{{{\pi ^2}}} \int \nolimits^\Lambda {\rm d}p\frac{{{p^2}}}{{{E_p}}}(1 - {f^ - }(m,\mu ) - {f^ + }(m,\mu ))\\H(m,\mu ) =& \frac{{{N_c}}}{{{\pi ^2}}}\int \nolimits^\Lambda {\rm d}p{p^2}({f^ - }(m,\mu ) - {f^ + }(m,\mu )),\end{split}$
(3)
where $ f^{\pm}(m,\mu) = 1/(1+E^{\beta(E\pm\mu)}) $, and $ N_c = 3 $.
The four-point coupling G, in terms of physical meaning, indicates an effective gluon propagator. If we take into account the quark propagator's feedback on the gluon self-energy [36, 37], the coupling strength is replaced by:
$G = {G_1} + {G_2}(\langle \bar uu\rangle + \langle \bar dd\rangle ) + {G_3}\langle \bar ss\rangle. $
(4)
In this study, we restrict our discussion to the $ G_2 = G_3 $ case for simplicity. Also, the six-point coupling constant K is kept unaltered, since it has a much smaller effect on the quark condensate than G. We fix these parameters at zero temperature and chemical potential following standard procedure, and we adopt the parameter set used in Ref. [38]. In Fig. 1, the ratio of $ G_1 $ to $ G_2(G_3) $ is further determined by fitting the critical temperature $ T_c $ to lattice results at finite temperature [39]. With only one additional parameter, we are able to efficiently fit $ \langle\overline{u}u\rangle $ and $ \langle\overline{s} s\rangle $ at finite temperature to the lattice results. The critical temperature $ T_c $ at zero chemical potential is about 158 MeV. We referred the NJL model and the lattice simulation to both use physical quark masses and other parameters fitted to physical meson properties, which is important since the behaviors of both theories strongly depend on the parameter sets they adopt. A previous NJL model calculation resulted in a $ T_c $ of about 190 MeV, while the PNJL resulted in a $ T_c $ of about 200 MeV [40] using the same parameter set in Table 1. The effective coupling G is lowered by about 20% when chiral symmetry is restored, and its direct effect is to bring forward the chiral phase transition both in T and $\mu_B$. A similar effect is also considered in the gluon-induced NJL (GI-NJL) model [41] and EPNJL models [42], where G is also lowered at high temperature, resulting in a reasonable $T_c$.
$m_u/\rm MeV$$m_s/\rm MeV$$\Lambda/\rm MeV$
5136631
$G_1(\rm MeV^{-2})$$G_2(G_3)(\rm MeV^{-2})$$K(\rm MeV^{-5})$
$3.74\times10^{-6}$$-1.74\times10^{-14}$$9.29\times10^{-14}$


Table1.Parameter set for the NJL model in our study

Figure1. (color online) (a) Light quark (u, d) condensate as a function of T, compared to the lattice result from Ref. [39] (b) $ \Delta_{l,s} $ (a linear combination of $ \langle\overline{u}u\rangle $ and $ \langle\overline{s} s\rangle $) as a function of T.

In real experiments, although $ \mu_u\approx\mu_d\approx \displaystyle\frac{1}{3}\mu_B $, $ \mu_s $ varies at different collision energies from about $ \displaystyle\frac{1}{5}\mu_B $ to $ \displaystyle\frac{1}{3}\mu_B $ [32, 43]. Since the location of the CEP is weakly dependent on the choice of $ \mu_s $ [26], we first assume an equal chemical potential for the three quarks. The resulting phase diagram of the quark masses is plotted in Fig. 2. The quark masses remain almost constant at low chemical potential and temperature, but vary drastically along a certain “band” when T and $ \mu_B $ increase, indicating a phase transition. At high baryon chemical potential or temperature, up- and down-quarks become small, while the strange quark remains quite massive. The CEP is located at $ (\mu_B,T) = (711\;\rm MeV,90\;MeV) $. Because of the discontinuity in the quark mass, the susceptibilities are expected to exhibit divergent behavior near the CEP.
Figure2. (color online) Phase diagram of quark masses. The solid line depicts the crossover line, and crosses make up the first order phase transition line (a) Up-quark mass $ m_u $ and down-quark mass $ m_d $ (b) Strange quark mass $ m_s $.

3.Quark number susceptibility derivation
As the linear response of the physical system to some external field, susceptibility is often measured to study the properties of a related system. Therefore, the studies of various susceptibilities are very important from the theoretical point of view, and they are widely used to study the phase transitions of strongly interacting matter [44]. These quantities are defined as:
$\frac{{{\partial ^n}\Omega }}{{\partial {\mu _i}\partial {\mu _j}\partial {\mu _k}\partial {\mu _p}\cdots}} = {\chi _{ijkp\cdots}}\ ,$
(5)
where $ \Omega $ is the thermodynamic potential density. Moreover, $ \chi_i^{(n)} = \partial^n \Omega/\partial \mu_i^{n} $.
We calculate these susceptibilities following the procedure introduced in Ref. [26]. Furthermore, we can change the base from $ \{u,d,s\} $ at the quark level to the conserved charges $ \{B,Q,S\} $ by using:
$\left\{ \begin{aligned}&{\mu _u} = \frac{1}{3}({\mu _B} + 2{\mu _Q})\\&{\mu _d} = \frac{1}{3}({\mu _B} - {\mu _Q})\\&{\mu _s} = \frac{1}{3}({\mu _B} - {\mu _Q} - 3{\mu _S})\end{aligned} \right. .$
(6)
Hence, the various susceptibilities can be expressed on the basis of $ \{B,Q,S\} $, for example:
$ \begin{aligned} &\chi _B^{(n)} = \displaystyle\frac{1}{{{3^n}}}\displaystyle\sum\limits_{\{ ijk...\} = u,d,s} {{\chi _{ijk...}}} \\ &\chi _Q^{(n)} = \displaystyle\frac{1}{{{3^n}}}\displaystyle\sum\limits_{\{ ijk...\} = u,d,s} {{2^p}} {( - 1)^q}{( - 1)^r}{\chi _{ijk...}}\\ &\quad (p,q,r\;{\rm equals\;the\;number\;of}\;u,d,s {\rm in}~\{ ijk...\} ~{\rm, respectively})\\ &\chi _S^{(n)} = {( - 1)^n}{\chi _{sss...}}. \end{aligned} $
(7)
We solve these susceptibilities order by order using the symbolic differentiation mentioned in Ref. [26]. The number of independent susceptibilities grows quadratically in order. If we calculate to the tenth order, there are 219 independent susceptibilities to solve. This symbolic differentiation method prevents truncation and rounding errors generated by the finite difference approximation and is much faster.
4.Moments of baryon, charge, and strange number
In order to compare our calculation with experiments and other model calculations, we consider the following moments defined as:
${m_n}(X) = \frac{{{T^n}\chi _X^{(n + 2)}}}{{\chi _X^{(2)}}},n = 1,2,3...$
(8)
where $ X = B,Q,S $. These ratios are then independent of the volume of the system. The signs of these moments are shown in Figs. 3, 4, 5. Red regions depict the positive values, while blue regions depict negative values. The yellow regions represent values close to 0. Moments with an absolute value greater than 1 are normalized to $ \pm1 $. Hence, although the magnitude of baryon moments is much greater than the other two, this cannot be deduced from this plot. The signs of these moments change increasingly as the order becomes higher. This implies that the experimental measurement is more sensitive to the location on the phase diagram for higher moments. Many qualitative features can be deduced from these plots. For example, at high baryon density and low temperature near the CEP, the moments are positive for all orders of B and Q, whereas the sign of $ m_n(S) $ changes every time as the order is raised in this region (this is not very surprising, since the definition of $ \chi^{n}_S = (-1)^n\chi^{n}_s $). Other qualitative behaviors can be tested by experiment as well. If a CEP is present and the entire phase diagram can be searched, then the sign change and large magnitude of higher order susceptibilities should be found. In this study, we focus on the behavior of $ m_n(B) $ along the freeze-out line, as it is the only line along which experimental measurement of these susceptibilities can be performed to date.
Figure3. (color online) Sign of $ m_n $ of baryon number moments. Red region represents positive values, while blue zone represents negative values. The dashed line depicts the crossover line, while the crosses represent the first–order phase transition curve.

Figure4. (color online) Sign of $m_n$ of charge number moments. Red region represents positive values, while blue zone represents negative values. The dashed line depicts the crossover line, where the crosses represent the first-order phase transition curve.

Figure5. (color online) Sign of $m_n$ of strangeness number moments. Red region represents positive values, while blue zone represents negative values. The dashed line depicts the crossover line, while the crosses represent the first-order phase transition curve.

5.Moments at vanishing chemical potential
It is important to study the susceptibilities (or equivalently, the moments defined in the previous section) at $ \mu_B = 0 $. Various models including the lattice QCD, HRG model, PNJL, and PQM performed studies on these quantities along this line. At low temperature, these models predict $ m_n(B)\approx1 $ for even n (the HRG model predicts $ m_n(B) = 1 $ at all temperatures). The NJL model, however, predicts $ m_n(B)\approx \displaystyle\frac{1}{3^n} $ for even n. This is because the NJL model is not confined. In the NJL model, the Boltzmann distribution is given as $ E^{-\beta (E_k\pm\mu)} $. At low temperature, the quark masses remain almost constant, such that the dominating contribution to the susceptibilities comes from the $ \mu $ derivative of the thermodynamic potential. We have $ m_n(x) = T^n\chi_x^{(2+n)}/\chi_x^{(2)} = 1 \ (x = u,d,s, n = 2,4,6...) $ and off-diagonal susceptibilities that are much smaller than the diagonal ones ($ \chi_{i,j,k...}\approx\chi_{i,i,i...} \delta_{i,j}\delta_{i,k}... $), such that
$\begin{split}{m_n}(B) =& {T^n}\chi _B^{(n + 2)}/\chi _B^{(2)} \\=&\displaystyle\frac{{{T^n}\displaystyle\frac{1}{{{3^{(n + 2)}}}}(\chi _u^{(n + 2)} + \chi _d^{(n + 2)} + \chi _s^{(n + 2)})}}{{\displaystyle\frac{1}{{{3^2}}}(\chi _u^{(2)} + \chi _d^{(2)} + \chi _s^{(2)})}} = \displaystyle\frac{1}{{{3^n}}}\end{split}.$
(9)
In chiral models with the Polyakov loop, since $ \Phi $ (the order parameter for confinement–de-confinement phase transition) is almost 0 at low temperature and vanishing chemical potential, the Boltzmann distribution becomes $ E^{-3\beta (E_k\pm\mu)} $. Thus, we have $ m_n(x) = 3^n \ (x = u,d,s, n = 2,4,6...) $ and $ m_n(B) = 1 $. However, at the temperatures near and above the crossover, the behavior of $ m_n(B) $ is the same as in other model calculations (see Fig. 6) [45, 30]. This is because near the transition temperature, the rapid change in quark masses (or equivalently, the quark condensates) govern the susceptibilities. As long as the chemical potential dependence of the quark masses (or the phase diagram) is similar, two models will yield similar moments. However, the Polyakov loop one should be included to find more quantitative correspondence with the lattice QCD or the HRG model at low temperatures.
Figure6. (color online) $m_n(B) \; (n=2,4,6,8)$ at vanishing chemical potential. $m_2(B)$ remains positive for all temperatures, and $m_6(B)$ becomes positive above about $1.05 T_c$, while $m_4(B)$ and $m_{8}(B)$ are negative at high temperatures.

6.Moments versus collision energy along three hypothetical freeze–out lines
To obtain the energy dependence of the conserved quantities' fluctuations, we need to know the position of the freeze-out line in the QCD phase diagram with collision energy $ \sqrt{s} $ [46]. Since in heavy ion collision experiments, chemical potential and temperature of the fireball have a distribution along the freeze-out line [43, 47], we search the region near the phase transition to find whether the theoretical results are consistent with experiments. The experimental freeze-out curve [47] is close to the crossover line at $ T = 0 $. However, for different collision centrality (or some other parameters), the freeze-out curve in the phase diagram may shift slightly. In Fig. 7, the dashed line depicts the crossover along with the first–order phase transition line. The three colored lines are three hypothetical freeze–out lines fitted to recent experimental data taken from Ref. [47]. The formula for these three curves are parameterized as:
Figure7. (color online) Three possible freeze-out curves. The dashed line depicts the crossover line. Crosses indicate the curve of the first-order phase transition. The triangles depict experimental data taken from Ref. [47]. The red solid freeze-out curve is fitted to experimental data, while the other two freeze-out curves differ from it by a small amount (see Eq. (10)).

$T({\mu _B}) = a - b\mu _B^2 - c\mu _B^4,$
(10)
where $ a = 0.158\;{\rm{GeV}} $, $ b = 0.14\;{\rm{GeV}}^{-1} $, $ c = 0.04 $ (solid), 0.08 (dot-dashed), and 0.12 (dashed) GeV?3. Another formula relating collision energy and baryon chemical potential is [47]:
${\mu _B}(\sqrt s ) = \frac{{1.477~{\rm GeV}}}{{1 + 0.343~{\rm GeV^{-1}}\sqrt s }}.$
(11)
Employing the freeze–out curve and Eq. (11), we plot the $ m_n(B) $ as a function of collision energy $ \sqrt{s} $ in Fig. 8. The solid lines are identified by color according to those in Fig. 7. The dashed lines depict the results from the free quark gas model. The magnitude of these baryon moments grows approximately one order of magnitude per order, while for a free quark gas model (or HRG model), higher order moments remains close to 0 at all $ \sqrt{s} $. There is only one peak at the first order of $ m(B) $. From the first to the fourth order, a valley gradually develops at $ \sqrt{s} $ below 10 GeV. From the fifth order to the eighth order, a second peak appears at $ \sqrt{s}\approx10 $ GeV. Although these features of the baryon moments seem to be present in all three freeze-out curves, we note that the energy dependence of these moments at high $ \sqrt{s} $ may vary if we choose a freeze-out curve that intersects the T axis at a different place. If the freeze-out curve is lowered, then the valley and the second peak may not be present. The energy dependence of the charge number and strangeness moments can also be found, but since their magnitude is much smaller than the baryon moments, and since they have similar (for the charge number) or simpler (for the strangeness) energy dependence, we omit these plots from this paper.
Figure8. (color online) Baryon moments versus collision energy along the three hypothetical freeze-out lines. The colored lines are identified in Fig. 7, and the black dashed lines depict results from a free quark gas model. (a) $m_1(B)$, (b) $m_2(B)$, (c) $m_3(B)$, (d) $m_4(B)$, (e) $m_5(B)$, (f) $m_6(B)$, (g) $m_7(B)$, (h) $m_8(B)$.

Two important questions remain. First, how can the energy dependence of these susceptibilities show whether the CEP is present? The shape of these curves in Fig. 8 may also be observed with a model that has no CEP (like the NJL model with a large vector interaction [48]). Moreover, since the freeze-out curve is not close to the CEP, the model with no CEP that includes a rapid crossover may yield rather large susceptibilities along the freeze-out line [49]. Second, how does the shape of the $ m_n(B)-\sqrt{s} $ reflect the location of the CEP? We can obtain some hints from Fig. 3. Within the phase boundary, the sign changes all start at the CEP. The freeze-out line intersects with these regions, resulting in a positive and negative signal. If the CEP moves to higher T and smaller $ \mu_B $, then these peaks and valleys occur at higher $ \sqrt{s} $. Nevertheless, both questions require more careful study to gain more information about the CEP.
7.Summary
We studied the fluctuations (susceptibilities) of conserved charges, i.e., the baryon number, the electric charge number, and the strangeness, using a modified three-flavor Nambu-Jona-Lasinio model at finite temperature T and baryon chemical potential $ \mu_B $. With a simple variation of the four-point coupling inspired by the OPE method, the quark condensate at finite temperature and zero chemical potential of the lattice result and our calculation model are in good agreement. We calculated these susceptibilities up to the tenth order. Qualitative behavior like the sign change is observed on the phase diagram, providing more information compared to lower order susceptibilities (there was no sign change at third order and one sign change at fourth order within the phase boundary). By fitting freeze-out curves to the data, we studied the energy dependence of the baryon number fluctuations (the baryon moments). The magnitude grows exponentially as the order increases, and two peaks and one valley are observed at higher order moments. By comparison to present and future generated experimental data, this analysis can help identify the presence or the location of the CEP.
相关话题/Second tenth order

婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熺紒銏犳灈缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧鈽夋い顓炴健閹虫粌顕ュΔ濠侀偗闁诡喗锕㈤幃鈺冪磼濡厧甯鹃梻浣稿閸嬪懐鎹㈤崟顖氭槬闁挎繂顦伴悡娆戔偓瑙勬礀濞层倝鍩㈤崼鈶╁亾鐟欏嫭绀冪紒顔肩Ч楠炲繘宕ㄩ弶鎴炲祶濡炪倖鎸鹃崰鎰邦敊韫囨稒鈷掗柛灞捐壘閳ь剙鍢查湁闁搞儺鐏涘☉銏犵妞ゆ劑鍊栧▓鎯ь渻閵堝棗鍧婇柛瀣尰閵囧嫰顢曢敐鍥╃杽婵犵鍓濋幃鍌炲春閳╁啯濯撮柧蹇曟嚀楠炩偓婵犵绱曢崑鎴﹀磹閺嶎厽鍋嬫俊銈呮噺閸嬶繝鏌曢崼婵囩┛濠殿喗濞婇弻鈩冨緞婵犲嫭鐨戝┑鈩冨絻閻楁捇寮婚敓鐘茬闁挎繂鎳嶆竟鏇熺節閻㈤潧袨闁搞劍妞介弫鍐閻樺灚娈鹃梺鍛婄箓鐎氼噣寮抽崱娑欑厱闁哄洢鍔屾晶顔界箾閸繄鐒告慨濠冩そ瀹曘劍绻濋崒姣挎洘绻涚€涙ḿ鐭岄柛瀣ㄥ€曢悾宄懊洪鍕紜闂佸搫鍊堕崕鏌ワ綖瀹ュ鈷戦悷娆忓閸斻倝鏌f幊閸斿孩绂嶉幖渚囨晝闁靛牆娲ㄩ敍婊冣攽鎺抽崐鏇㈠疮椤愶箑鍑犻柡鍐ㄧ墛閻撴瑥顪冪€n亪顎楅柍璇茬墛椤ㄣ儵鎮欓弶鎴犱紝濡ょ姷鍋涘ú顓€€佸▎鎾充紶闁告洦浜i崺鍛存⒒閸屾艾鈧绮堟笟鈧獮鏍敃閿曗偓绾惧湱鎲搁悧鍫濈瑲闁稿绻濆鍫曞醇濮橆厽鐝曞銈庡亝濞茬喖寮婚妸鈺傚亞闁稿本绋戦锟�
2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮妤呮⒒娓氣偓濞佳呮崲閸儱纾归柡宓偓濡插牏鎲搁弮鍫濊摕闁挎繂顦悞娲煕閹板吀绨奸柛锝庡幘缁辨挻鎷呴崜鎻掑壈闂佹寧娲︽禍顏勵嚕椤愶箑纾奸柣鎰綑濞堟劙姊洪崘鍙夋儓闁哥姵鑹惧嵄闁告鍋愰弨浠嬫煃閽樺顥滃ù婊呭仜椤儻顦虫い銊ワ躬瀵偆鈧綆鍓涚壕钘壝归敐澶嬫锭濠殿喖鍊搁湁婵犲﹤妫楅悡鎰庨崶褝鍔熼柍褜鍓氱粙鎺曟懌婵犳鍨伴顓犳閹烘垟妲堟慨妤€妫楅崜杈╃磽閸屾氨孝闁挎洏鍎茬粚杈ㄧ節閸ヨ埖鏅濋梺闈涚墕閹峰寮抽銏♀拺闁告捁灏欓崢娑㈡煕閵娿儳鍩g€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熸潏鍓хɑ缁绢叀鍩栭妵鍕晜閼测晝鏆ら梺鍝勬湰缁嬫垿鍩㈡惔銈囩杸闁哄洨濯崬鍦磽閸屾瑧绐旂紓鍌涜壘铻為柛鏇ㄥ枤娴滄瑩姊绘担鍛婂暈婵炶绠撳畷銏c亹閹烘垹锛涢梺鍦劋椤ㄥ棝鍩涢幋锔界厱婵犻潧妫楅鈺呮煃瑜滈崜娆戠礊婵犲洤绠栭梺鍨儐缂嶅洭鏌嶉崫鍕簽婵炶偐鍠庨埞鎴︻敊鐟欐帞鎳撻埢鏂库槈閵忊€冲壒濠德板€愰崑鎾绘煃鐟欏嫬鐏撮柟顔规櫊楠炴捇骞掗崱妞惧闂佸綊妫跨粈渚€鏌ㄩ妶鍛斀闁绘ɑ褰冮弸銈嗙箾閸粎鐭欓柡宀嬬秮楠炲洭顢楁担鍙夌亞闂備焦鎮堕崐妤呭窗閹邦喗宕叉繝闈涱儏閻掑灚銇勯幒鎴濐仼闁绘帗妞介弻娑㈠箛椤栨稓銆婇梺娲诲幗椤ㄥ懘鍩為幋锔绘晩缂佹稑顑嗛悾鍫曟⒑缂佹﹩娈旂紒缁樺笧閸掓帡宕奸悢椋庣獮闁诲函缍嗛崜娑㈩敊閺囥垺鈷戦柣鐔煎亰閸ょ喎鈹戦鐐毈鐎殿喗濞婇崺锟犲磼濠婂拋鍟庨梺鑽ゅТ濞壯囧礋椤愵偂绱�547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鎮楅敐搴′簻妞ゅ骏鎷�4婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簼閺呮煡鏌涢妷銏℃珖妞わ富鍨跺娲偡闁箑娈堕梺绋款儑閸犳牠宕洪姀銈呯睄闁逞屽墴婵$敻宕熼鍓ф澑闂佽鍎抽顓⑺囬柆宥嗏拺缂佸顑欓崕鎰版煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫨鈧線寮崼婵嗚€垮┑掳鍊曢崯顐︾嵁閹扮増鈷掗柛灞剧懅椤︼箓鏌涘顒夊剰妞ゎ厼鐏濋~婊堝焵椤掆偓閻g兘顢涢悜鍡樻櫇闂侀潧绻堥崹鍝勨枔妤e啯鈷戦梻鍫熶緱濡狙冣攽閳ヨ櫕鍠橀柛鈹垮灲瀵噣宕奸悢鍝勫箥闂備胶顢婇~澶愬礉閺囥垺鍎嶆繛宸簼閻撶喖鏌i弮鍫熸暠閻犳劧绱曠槐鎺撴綇閵娿儳鐟查悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊呭仦缁傛帡鎮℃惔妯绘杸闂佺粯鍔樺▔娑氭閿曞倹鐓曟俊銈呭閻濐亜菐閸パ嶅姛闁逞屽墯缁嬫帟鎽繝娈垮灡閹告娊骞冨畡鎵虫瀻婵炲棙鍨甸崺灞剧箾鐎涙ḿ鐭掔紒鐘崇墵瀵鈽夐姀鐘电杸闂佺ǹ绻愰幗婊堝极閺嶎厽鈷戠紒顖涙礃濞呮梻绱掔紒妯肩疄鐎殿喛顕ч埥澶娾堪閸涱垱婢戦梻浣瑰缁诲倿骞婃惔顭掔稏闁冲搫鎳忛埛鎴︽煕濞戞﹫鍔熼柟铏礈缁辨帗娼忛妸锔绢槹濡ょ姷鍋涚换姗€骞冮埡鍐╁珰闁肩⒈鍓﹂崯瀣⒒娴e憡鍟炲〒姘殜瀹曞綊骞庨崜鍨喘閸╋繝宕ㄩ瑙勫闂佽崵鍋炵粙鍫ュ焵椤掆偓閸樻牗绔熼弴銏♀拻濞达絽鎲$拹锟犲几椤忓棛纾奸柕濞垮妼娴滃湱绱掗鍛箺鐎垫澘瀚伴獮鍥敇閻樻彃绠婚梻鍌欑閹碱偆鈧凹鍓涢幑銏ゅ箳閺冨洤小闂佸湱枪缁ㄧ儤绂嶅⿰鍫熺厸闁搞儺鐓侀鍫熷€堕柤纰卞厴閸嬫挸鈻撻崹顔界彯闂佺ǹ顑呴敃銈夘敋閿濆洦宕夐悶娑掑墲閻庡姊虹拠鈥崇€婚柛蹇庡嫎閸婃繂顫忕紒妯诲闁荤喖鍋婇崵瀣磽娴e壊鍎愰柛銊ㄥ劵濡喎顪冮妶鍡樺蔼闁搞劌缍婇幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷40缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎸鹃埀顒冾潐濞叉牕煤閵娧呬笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷顔藉缓闂侀€炲苯澧版繛鎴犳暬楠炴牗鎷呴崨濠勨偓顒勬煟鎼搭垳绉靛ù婊冪埣閹垽宕卞☉娆忎化闂佹悶鍎荤徊娲磻閹捐绀傞柛娑卞弾濡粎绱撻崒姘偓宄懊归崶銊d粓闁归棿鐒﹂崑锟犳煃閸濆嫭鍣归柦鍐枔閳ь剙鍘滈崑鎾绘煕閺囥劌浜炴い鎾存そ濮婃椽骞愭惔锝囩暤濠电偠灏欐繛鈧€规洘鍨块獮妯肩磼濡鍔掗梺鑽ゅ枑閻熴儳鈧凹鍓熷畷銏c亹閹烘挴鎷洪梺鍛婄箓鐎氼厼顔忓┑瀣厱閹兼番鍨归悘鈺備繆閸欏濮囨顏冨嵆瀹曞ジ鎮㈤崫鍕闂傚倷鑳剁涵鍫曞礈濠靛枹娲冀椤愩儱小缂備緡鍋勭€殿剟姊婚崒姘偓椋庢濮橆兗缂氱憸宥堢亱闂佸搫鍟崐濠氭儗閸℃褰掓晲閸偄娈欓梺鑽ゅ枑鐎氬牓寮崼婵嗙獩濡炪倖妫侀~澶屸偓鍨墵濮婄粯鎷呴崨濠傛殘婵炴挻纰嶉〃濠傜暦閵忋倖瀵犲璺烘閻庢椽鎮楅崗澶婁壕闂佸憡娲﹂崜娑㈠储闁秵鈷戦柛婵嗗閺嗙偤鏌熺粙鍨挃濠㈣娲熼獮鎰償濞戞鐩庨梻渚€娼ф蹇曟閺団偓鈧倿鎳犻鍌滐紲闂佸搫鍟崐鎼佸几濞戞瑣浜滈柕蹇婂墲缁€瀣煙椤旇娅婃い銏℃礋閿濈偤顢橀悜鍡橆棥濠电姷鏁搁崑鐘诲箵椤忓棛绀婇柍褜鍓氶妵鍕敃閵忊晜鈻堥梺璇″櫙缁绘繈宕洪埀顒併亜閹烘垵顏柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備浇顫夊畷妯衡枖濞戙埄鏁佺€光偓閸曨剛鍘告繛杈剧到婢瑰﹪宕曡箛鏂讳簻妞ゆ挴鍓濈涵鍫曟煙妞嬪骸鈻堥柛銊╃畺瀹曟宕ㄩ娑樼樆闂傚倸鍊风欢姘跺焵椤掑倸浠滈柤娲诲灦瀹曘垽骞栨担鍦幘闂佸憡鍔樼亸娆撳春閿濆應鏀介柨娑樺閺嗩剟鏌熼鐣屾噰鐎殿喖鐖奸獮瀣敇閻愭惌鍟屾繝鐢靛У椤旀牠宕板Δ鍛櫇闁冲搫鎳庣粈鍌涚箾閹寸偟顣叉い顐f礋閺屻劌鈹戦崱妯轰痪閻熸粎澧楃敮妤呭疾閺屻儲鐓曢柍鈺佸暟閹冲懘鏌i幘鍐测偓鎼佲€旈崘顔嘉ч柛鎰╁妿娴犲墽绱掗悙顒佺凡缂佸澧庨崚鎺楀煛閸涱喖浜滅紒鐐妞存悂寮插┑瀣拺闂傚牊绋撴晶鏇熺箾鐠囇呯暤妤犵偛妫濋弫鎰緞鐎Q勫闂備礁婀辨灙婵炲鍏橀崺銉﹀緞鐎c劋绨婚梺鎸庢椤曆冾嚕椤曗偓閺屾盯鍩為幆褌澹曞┑锛勫亼閸婃牜鏁幒妤佹櫇闁靛/鈧崑鎾愁潩閻愵剙顏�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸垹绁﹂梺鍛婂姦閸犳牜绮绘繝姘厱闁规崘灏欑粣鏃堟煃閻熸壆绠茬紒缁樼箞婵偓闁挎繂妫涢妴鎰斿Δ濠佺凹闁圭ǹ鍟块悾宄扳攽鐎n亜绐涢柣搴㈢⊕宀e潡宕㈤柆宥嗏拺闁告繂瀚弳濠囨煕鐎n偅灏电紒杈ㄥ笧閳ь剨缍嗛崑鍛暦瀹€鈧埀顒侇問閸n噣宕戞繝鍥х畺濞寸姴顑呴崹鍌涖亜閹扳晛鐏╂鐐村灴濮婄粯鎷呴崨濠冨創濠电偠顕滅粻鎴︼綖濠靛惟闁冲搫鍊告禒顓㈡⒑鐎圭姵銆冮悹浣瑰絻鍗遍柛顐犲劜閻撴瑩鏌i幇闈涘缂傚秵鍨块弻鐔煎礂閸忕厧鈧劙鏌$仦鐣屝ユい褌绶氶弻娑㈠箻閸楃偛顫囧Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷�1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻娑㈠箻閼碱剦妲梺鎼炲妽缁诲牓寮婚妸鈺傚亜闁告繂瀚呴姀銏㈢<闁逞屽墴瀹曟帡鎮欑€电ǹ骞堟繝鐢靛仦閸ㄥ爼鏁冮锕€缁╃紓浣贯缚缁犻箖鏌涢锝囩畼闁绘帗鎮傞弻锛勪沪缁嬪灝鈷夐悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偤宕堕浣叉嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犲Δ锝呭暞閻撴瑩鏌涢幋娆忊偓鏍偓姘炬嫹