HTML
--> --> -->The finite volume effects have attracted considerable theoretical attention in the past decades [17-20]. The current studies are based on the assumption that the effective Lagrangian of a finite (small) volume physical system is the same as the corresponding infinite physical system. Based on this assumption, different models are adopted for studying the finite volume effects on the QCD phase transition, for example, the Random Matrix Theory (RMT) [21-25], Quark-meson-model [26-31], (Polyakov-loop extended) Nambu-Jona-Lasinio (NJL) model [32-38], Dyson-Schwinger equations (DSEs) [39, 40], etc. Since the spatial size of the physical system is limited, it is necessary to select appropriate spatial boundary conditions. Usually, periodic or anti-periodic boundary conditions are adopted [20], which results in discretized momenta in spatial direction, as is the case with Matsubara frequency in imaginary temperature field theory. As an example, for a fermion in a finite volume, the quark momentum is discretized and the integral over all spatial momenta is replaced by a sum over discrete momentum modes. The discretized momentum depends on the selected anti-periodic boundary condition (APBC)
$\vec p_{\rm APBC}^2 = \frac{{4{\pi ^2}}}{{{L^2}}}\sum\nolimits_{i = 1}^3 {{{\left({n_i} + \frac{1}{2}\right)}^2}} ,{n_i} = 0, \pm 1, \pm 2\,...,$ | (1) |
As shown in the finite temperature field theory, the running couplings in Quantum Electrodynamics (QED) [41, 42] and QCD [43] depend on temperature. The following question then naturally arises: the effective Lagrangian of a finite volume system should, in principle, depend on the system size, similarly to a finite temperature system where it depends on temperature; so, how should an effective Lagrangian be constructed to reasonably reflect the finite volume effects? This is the motivation for this paper.
Before we introduce the effective Lagrangian of a finite volume system with spatial size effects, let us briefly review how we introduced in previous studies the temperature dependent effective Lagrangian in a finite temperature system. As is known, the quark propagator and gluon propagator satisfy their respective DSEs and they are coupled to each other. Therefore, the gluon propagator should depend on the temperature and/or chemical potential, which is also shown clearly in lattice simulations. However, in the framework of the usual DSEs, the gluon propagator is only used as phenomenological input, and the coupling between the gluon propagator and the quark propagator is not considered, as are not considered the effects of temperature and chemical potential on the gluon propagator. More specifically, in the framework of the NJL model, the coupling constant can be regarded as the inverse of a "static" gluon propagator, and the effect of the quark propagator on the "static" gluon propagator should be, in principle, included. The authors of Refs. [9, 11, 13, 44] considered the influence of quark feedback on the "static" gluon propagator through the operator product expansion (OPE) method, and obtained a modified NJL model with quark feedback. In the modified NJL model described in Refs. [9, 11, 13, 44], the coupling constant G in the NJL model is modified into
This paper is organized as follows: In Section 2, the modified NJL model with finite volume dependent coupling is introduced. The chiral phase transition in the modified NJL model is presented in Section 3, and the conclusion is given in Section 4.
${\cal L} = i\bar \psi /\!\!\!\!\partial \psi - m\bar \psi \psi + \frac{G}{{2{N_c}}}\left[ {{{\left( {\bar \psi \psi } \right)}^2} + {{\left( {\bar \psi {\gamma _5}\tau \psi } \right)}^2}} \right],$ | (2) |
$M = m - \frac{G}{{{N_c}}}\langle \bar \psi \psi \rangle ,$ | (3) |
In this paper, the scheme of proper time regularization proposed by J. S. Schwinger [45] is adopted
$\frac{1}{{{p^2} + {m^2}}} = \int_{\frac{1}{{{\Lambda ^2}}}} {\rm{d}} s\;{\rm{exp}}\left[ { - s\left( {{p^2} + {m^2}} \right)} \right],$ | (4) |
$\begin{split} M =& m + 4G{N_f}M\int {\frac{{{{\rm{d}}^4}p}}{{{{(2\pi )}^4}}}} \int {\rm{d}} s{\rm{exp}}\left[ { - s\left( {{p^2} + {M^2}} \right)} \right]\\ =& m + \frac{M}{{3{\pi ^3}}}G\int_{\frac{1}{{{\Lambda ^2}}}} {\rm{d}} s{s^{ - 2}}{\rm{exp}}( - s{M^2}). \end{split}$ | (5) |
$G \to {G_1} + {G_2}( - \langle \bar \psi \psi \rangle ).$ | (6) |
$\begin{array}{l} M = m + \displaystyle\frac{M}{{3{\pi ^3}}}\left[ {{G_1} + {G_2}M/{\pi ^3}\int_{\frac{1}{{{\Lambda ^2}}}} {\rm{d}} s{s^{ - 2}}{\rm{exp}}( - s{M^2})} \right]\\ \;\;\;\;\;\;\;\;\displaystyle\times\int_{\frac{1}{{{\Lambda ^2}}}} {\rm{d}} s{s^{ - 2}}{\rm{exp}}\left( { - s{M^2}} \right). \end{array}$ | (7) |
$ \begin{split}M =& m \!+\! \frac{{MT}}{{\pi \sqrt \pi }}\left[ {{G_1} + {G_2}MT\frac{3}{{\pi \sqrt \pi }}\int_{\frac{1}{{{\Lambda ^2}}}} {\rm{d}} s{\theta _2}({{\rm e}^{ - 4{\pi ^2}{T^2}s}}){s^{ - 3/2}}{{\rm e}^{ - s{M^2}}}} \right] \\ &\times \int_{\frac{1}{{{\Lambda ^2}}}} {\rm{d}} s{\theta _2}({{\rm e}^{ - 4{\pi ^2}{T^2}s}}){s^{ - 3/2}}{{\rm e}^{ - s{M^2}}}.\quad\quad\quad\quad\quad\quad\quad\quad\quad(8) \end{split} $ |
In principle, thermodynamical properties of a finite volume system depend not only on the size of the system but also on its geometric shape. In this paper, as an interesting attempt, we take a cubic box as the geometric shape of the system. We consider a cubic box with edge length L and anti-periodic boundary conditions in all spatial directions for a fermion, i.e.,
$\begin{array}{l} \psi ({x_0},{x_1},{x_2},{x_3}) = - \psi ({x_0},{x_1} + L,{x_2},{x_3}),\\ \psi ({x_0},{x_1},{x_2},{x_3}) = - \psi ({x_0},{x_1},{x_2} + L,{x_3}),\\ \psi ({x_0},{x_1},{x_2},{x_3}) = - \psi ({x_0},{x_1},{x_2},{x_3} + L). \end{array}$ |
$\int {\frac{{{\rm{d}}{p^4}}}{{{{(2\pi )}^4}}}} \to \frac{T}{{{L^3}}}\sum\limits_{{n_1},{n_2},{n_3},{n_4} = - \infty }^\infty . $ |
$\begin{split} &M = m + 4M{N_f}\\&\;\times\left\{ {{G_1} + {G_2}\displaystyle\frac{{24T}}{{{L^3}}}\int {\rm{d}} s{{\left[{\theta _2}\left({{\rm e}^{ - \frac{{4{\pi ^2}s}}{{{L^2}}}}}\right)\right]}^3}[{\theta _2}({{\rm e}^{ - 4{\pi ^2}{T^2}s}})]{\rm{exp}}( - s{M^2})} \right\}\\ &\;\times\left\{ {\displaystyle\frac{T}{{{L^3}}}\int {\rm{d}} s{{\left[{\theta _2}\left({{\rm e}^{ - \frac{{4{\pi ^2}s}}{{{L^2}}}}}\right)\right]}^3}[{\theta _2}({{\rm e}^{ - 4{\pi ^2}{T^2}s}})]{\rm{exp}}( - s{M^2})} \right\}. \end{split}$ | (9) |
$ - \langle \bar \psi \psi \rangle = {\rm{Tr}}S(p) = {N_f}{N_c}\int {\frac{{{{\rm{d}}^4}p}}{{{{(2\pi )}^4}}}} \frac{{4M}}{{{p^2} + {M^2}}}.$ |
${\chi _T} = \frac{{\partial \langle \bar \psi \psi \rangle }}{{\partial T}},$ | (10) |
In this paper, to perform numerical calculations, the parameters are chosen as follows:
Figure1. (color online) The results of the modified NJL model compared with the lattice simulations from Ref. [47].
Fig. 2 shows the quark condensate as a function of temperature for different system sizes. It is easy to see that the condensate decreases with smaller L at low temperatures. As spatial and temporal directions are equivalent, the decrease of size means increase of temperature, which enhances the fluctuations and leads to restoration of DCSB. With temperature increase, due to thermal fluctuations, DCSB is partially restored and the condensates of different sizes tend to be equal. For L = 4 fm, the condensate is almost the same as for an infinite thermodynamical system, which implies that systems larger than 4 fm can be regarded as infinite thermodynamical systems. This result agrees qualitatively with the results of different model calculations [27, 39].
Figure2. (color online) The quark condensate as a function of temperature in the modified NJL model.
As is known, the effective coupling decreases in the perturbative regime with increase of temperature [43]. However, in the strong coupling regime, this is not very clear. In our study, the influence of quark feedback is included in the modified NJL model and the effective coupling is divided into two parts: the first part, G1 , is independent of the system size and temperature, while the second,
Figure3. The system size dependent coupling as a function of the system size L at zero temperature.
Figure4. Quark condensate as a function of the system size L at zero temperature.
Let us now proceed to the calculations of thermal susceptibility. Since the effective coupling decreases with decreasing size of the system, the modified NJL model, when compared to the normal NJL, should result in a chiral phase transition for the same size L. In Fig. 5 and Fig. 6 , the susceptibilities for both models are shown for system sizes L = 3 fm and L = 2 fm, respectively. It is found that the susceptibilities have a smooth peak, which means that the transition is a crossover at a finite temperature. For L = 3 fm, the pseudo-critical temperature Tc = 156 MeV in the modified NJL model is smaller than in the normal NJL model, which is Tc = 181 MeV. As the size decreases, e.g. for L = 2 fm, the pseudo-critical temperature also decreases: in the modified NJL model it is Tc = 149 MeV, and Tc = 180 MeV in the normal NJL model. Therefore, the pseudo-critical temperature decreases in both models. This result agrees with the other model calculations [34, 35, 38]. The transition temperature in the modified NJL model is smaller than in the NJL model, which means that the quark feedback increases the fluctuations and reduces the transition temperature. In order to study the contribution of the quark feedback and of the anti-periodic boundary conditions on the pseudo-critical temperature, the susceptibilities in the modified and normal NJL models are shown in Fig. 6. From Fig. 6, it is easy to find that the pseudo-critical temperature of the chiral phase transition is due to both the modified effective coupling and the anti-periodic boundary conditions, and that the effect of the modified effective coupling is more pronounced. This further demonstrates the importance of introducing the effective coupling that is related to the spatial size. Specifically, for the case of an infinite volume, the modified NJL model reduces the critical temperature from Tc = 183 MeV to Tc = 156 MeV, and this critical temperature is even smaller than in the normal NJL model with L = 2 fm (Tc = 180 MeV). It is also found that the modified NJL model with anti-periodic boundary conditions further reduces the critical temperature (Tc = 149 MeV). The above calculations clearly show that the transition temperatures obtained by considering the size dependent effective Lagrangian are much smaller than the corresponding temperatures obtained with the size independent Lagrangian. We believe that this fact should be considered in the forthcoming second phase of the RHIC energy scan.
Figure5. The thermal susceptibility as a function of temperature for the system size L = 3 fm.
Figure6. (color online) The thermal susceptibilities for the modified and normal NJL models in infinite volume, and for the modified and normal NJL models for the system size L = 2 fm (with anti-periodic boundary conditions), as a function of temperature.