删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

克里雅河下游沉积物的光释光年龄与晚更新世末以来沙漠的形成

本站小编 Free考研考试/2021-12-29

张峰,, 王姣, 马丽, 迪丽拜尔·吐尔孙新疆大学教育部绿洲生态重点实验室,乌鲁木齐 830046

OSL chronology reveals Late Pleistocene floods and the impact on landform evolution at the lower reaches of the Keriya River in the Taklamakan Desert

ZHANG Feng,, WANG Jiao, MA Li, TURSUN·DilibaierKey Laboratory of Oasis Ecology (Xinjiang University) Ministry of Education, Urumqi 830046, China

收稿日期:2020-09-30修回日期:2021-06-30
基金资助:国家自然科学基金项目(U1503381)
国家自然科学基金项目(40701188)
国家自然科学基金项目(41161034)
国家科技基础资源调查专项课题(2017FY101004)
新疆维吾尔自治区天山雪松人才项目(2017XS21)


Received:2020-09-30Revised:2021-06-30
Fund supported: National Natural Science Foundation of China(U1503381)
National Natural Science Foundation of China(40701188)
National Natural Science Foundation of China(41161034)
National Science & Technology Infrastructure Center of China(2017FY101004)
Tianshan Cedar Project of Xinjiang Uygur Autonomous region(2017XS21)

作者简介 About authors
张峰(1973-), 男, 山东人, 博士, 副教授, 主要从事干旱区环境演变研究。E-mail: zhang-f-eng@sohu.com






摘要
有关塔克拉玛干沙漠演化的年代学数据尚少,本文在地貌认知较少的克里雅河下游沙漠深处的圆沙和喀拉墩一带16处剖面获取了18件河流沉积光释光(OSL)年龄。新测得的年龄数据分布于3.4—44.1 ka。全新世样品多分布于圆沙与喀拉墩干三角洲及其之间的地区,年龄集中在11 ka、8—9 ka、5—6.5 ka、4.6 ka与3.4—3.7 ka。深海氧同位素3阶段(MIS3)样品位置在克里雅河与和田河之间,分布在约38—47 ka前后。末次冰期冰盛期(LGM)末样品分布在通往圆沙古河道的西侧,年龄在14.5 ka前后。根据沉积物样品及年代学数据认为:克里雅河下游曾在MIS3阶段末、LGM末与全新世多次发生洪泛;数次的洪泛事件对克里雅河下游地貌发育产生重要影响;克里雅河下游干三角洲及现代河流西侧的流动沙丘主要形成于全新世,与前人“发育于汉唐以来”的观点不完全一致。克里雅河下游河流沉积发生时间与塔里木盆地周缘山脉冰进冰消有一定对应,暗示气候变化可能间接影响着塔克拉玛干沙漠沙丘的发育。
关键词: 塔克拉玛干沙漠;洪泛;沙丘;MIS3;LGM;全新世;冰消

Abstract
Climate change impacts on the relationship between fluvial processes and dunes landform evolution have been a research topic. However, the chronology data used to examine such relationship are deficient. The Keriya River has a glacial origin in the Kunlun Mountains at the south margin of the Tarim Basin. The river flows into the Taklamakan Desert, the second largest shifting dunes desert in the world. The dry channels and shifting dunes in the area provide an ideal opportunity to understand fluvial and eolian landform evolution processes and their relationship with climate change. We investigated this area from 2008-2011, and obtained 18 fluvial sediment samples from 16 sections for optically stimulated luminescence (OSL) dating. Results show that the ages are ranged from 3.4-44.1 ka. Most (13) samples were from the Holocene, around 11 ka, 8-9 ka, 5-6.5 ka, 4.6 ka and 3.4-3.7 ka respectively. which were distributed along ancient river channels around Yuansha and Karadun. Two samples close to the Hotan River (38-47 ka) fall in the Marine Isotope Stages 3 (MIS3). Three samples (of one section) were located near ancient channels flowing towards the Yuansha Site aged around 14.5 ka, the Last Glacial Maximum (LGM). The sediment samples and OSL ages of this work suggest that the Keriya River was flooded in the Holocene, the LGM and the MIS3 stage. Fluvial sediment provided source material for dunes and fluvial processes impacted landform evolution at the lower reaches of the Keriya River. Our results suggest that most dunes covered on fluvial sediments at the lower reaches and west of the Keriya River developed since the Holocene. This differs from previous works suggesting that they developed "since the Han and Tang dynasties". The OSL ages of fluvial sediments were consistent with the reported deglaciation (after glacial advance) ages in alpine mountains surrounding the Tarim Basin. This suggests that climate fluctuation might have impacted the occurrence of floods and the formation of dunes in the Taklamakan Desert.
Keywords:Taklamakan Desert;floods inundation;dunes;MIS3;LGM;Holocene;glacial ablation


PDF (4758KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张峰, 王姣, 马丽, 迪丽拜尔·吐尔孙. 克里雅河下游沉积物的光释光年龄与晚更新世末以来沙漠的形成. 地理学报, 2021, 76(9): 2240-2252 doi:10.11821/dlxb202109014
ZHANG Feng, WANG Jiao, MA Li, TURSUN·Dilibaier. OSL chronology reveals Late Pleistocene floods and the impact on landform evolution at the lower reaches of the Keriya River in the Taklamakan Desert. Acta Geographica Sinice, 2021, 76(9): 2240-2252 doi:10.11821/dlxb202109014


1 引言

塔克拉玛干沙漠是中国面积最大的沙漠[1,2,3,4,5,6,7]。关于其形成,舒莫夫认为是海成平原[2,6,8],那琳和西尼村等认为是古湖[2,6,8]。朱震达[9]深入研究了克里雅河下游的干三角洲,并以此提出这一带的沙漠是“就地起沙”形成于河流冲洪积平原之上,这一观点之后还得到来自沙漠内部的年代学数据[10,11,12]的支持。关于沙漠形成的时代,有****获得了沙漠下风向昆仑山北缘黄土的沉积年龄[4,5],并依据塔里木盆地现代环流格局[3]认为沙漠起源于中更新世[4]及第三纪的晚期[5]。沙漠中的沉积岩层还获得了晚新生代[13]和中新世的年龄[7]。但这都不意味着过去就存在一个如现在这般的沙漠,直接来自塔克拉玛干沙漠内部,牙通古斯河与安迪尔河下游地表亚粘土层下的沙质沉积物的光释光(Optical Stimulated Luminescence, OSL)年龄[14]显示,河流曾于约40 ka发生沉积并可能为沙漠提供了物源,现代沙漠景观形成的时代距今似乎并不那么遥远,塔里木盆地南缘其它河流下游的沙漠是否也与此相类似呢?

克里雅河是一条发源于昆仑山并深入到塔克拉玛干沙漠腹地的河流[9, 15-17]图1),其流域范围北可至塔里木河,其下游河流与沙漠地貌发育[9-10, 16, 18-19],绿洲遗迹丰富[20],是认识沙漠内部的理想地带。中国科学院兰州沙漠研究所组织的沙漠考察[2, 21],第一次塔克拉玛干沙漠综合考察等[22],均将克里雅河下游列为了重点地区。相关成果为认识塔克拉玛干沙漠形成与演化问题提供了重要基础,其中曹琼英和夏训诚[10]、周兴佳[23]、李保生[11, 24]与靳鹤龄[25]等测定了沙漠沉积14C与热释光断代数据,获取了有关该地区沙漠演化的梗概。但早期的14C年龄对碳库效应[26]讨论较少,热释光年龄也或因晒退不彻底存在误差偏大的问题[27],这影响到对该河流及其流域沙漠演变问题的进一步认识。

图1

新窗口打开|下载原图ZIP|生成PPT
图1塔里木盆地地形与沉积物剖面位置及克里雅河下游Landsat8 OLI假彩色合成遥感影像(RGB: 7-5-2)与OSL样品采样点位置

注:① 牙通古斯和安迪尔河下游剖面[14]、② 策勒河上游沙楔[14]、③ 吐米亚河下游剖面[14]、④ 尧干托格拉克剖面[10, 14]、⑤ 普鲁羊场阶地[52]、⑥ 博斯腾湖剖面[53]、⑦ 和田河麻扎塔格古河道断面[25]、⑧ 克里雅沙漠腹地剖面[25]、⑨ 塔河中游剖面[50,51]、⑩克里雅剖面[11]、? 阿羌剖面[40]、? 木扎尔特破城子冰碛[43]、? 崇测冰川冰碛[48]、? 甜水海湖泊沉积[41]、? 克里雅冰川冰碛[47]、? 公格尔山冰碛[45,46,47,48,49]
Fig. 1Map showing the elevation of the Tarim Basin (ASTER GDEM). Red solid triangles represent the location of published age sampling sites and processed Landsat8 (Operational Land Imager, OLI) false color image (RGB: 7-5-2) showing the Keriya River lower reaches and sampling sites in this work



光释光技术对于测定年轻地质体的埋藏年代十分理想[28],由于沙漠环境下风沙[29]及河流沉积曝光均良好[30],其成为近来沙漠演化研究的重要手段[31]。然而目前研究区已有的光释光年代学数据较少,且时间主要集中在全新世后期[14, 19]。本文新报道了克里雅河下游沙漠深处更广范围沉积物的光释光年龄,以期为认识克里雅河下游及塔克拉玛干沙漠地貌的形成与演化提供新数据。

2 克里雅河下游概况

克里雅河下游为暖温带沙漠气候[23]。以达理雅博依为例,年均降水不足10 mm/a[23],年均气温约11.8 ℃(2015年)[32]。河流主要受昆仑山山区冰雪融水补给[23],年径流量约 9×108 m3,春、夏各有2个洪水期和枯水期(据新疆和田水文局),在下游沙漠形成时令河[23]。河流年输沙量3.51×106 t[9]。植物主要见胡杨(Populus euphratica)、灰杨(Populus schrenk)、柽柳(Tamarix spp.)、芦苇(Phragmites australis)等[17]

克里雅河下游大致可分为2段,上段自于田县至米萨来一带,下段为米萨来以北(图1b)。上段河道较为固定,在尧干托格拉克、于田克里雅大桥与米萨来等地留有自老至新的阶地[10, 14, 23-24, 33]。尾闾的达理雅博依荒漠河岸林绿洲形成于约0.4 ka[33,34]。在达理雅博依乡政府以西20 km有一处干三角洲,存有形成于约汉至唐代的喀拉墩古城[20]。遥感影像中,在米萨来以西(图1b)可见另处干三角洲及古河道通向春秋战国至魏晋的圆沙古城[19-20, 35]。圆沙古城以北约80 km的沙漠更深处,存有2处更老的青铜器时代遗址[36]。唐代丹丹乌里克遗址[9]及所在的干三角洲则位于河流下游上段。在这些干三角洲上,古河网、新月形沙丘与新月形沙丘链密布,外围则多分布较大规模沙垄(图1b)。

3 材料与方法

本文采样点大致覆盖了克里雅河下游的西部,特别是在现代和田河与克里雅河之间沙漠深处也有分布,但暂未涉及克里雅河下游以东地区。在16个剖面获得共18件OSL年代学样品(图1图2),剖面多具亚粘土和粉沙互层的二元沉积旋迴结构(图2)。其中剖面KU1、KU2、KU3与KU16位于通往圆沙古城的古河道一带,KU1为风蚀阶地,KU2为风蚀河谷,2处剖面相距约2.5 km。KU3为风蚀露头。KU5、KU11与KU12位置在现代克里雅河与通往圆沙古城的古河道间,其中KU5为人工开挖露头,其上部为风成沙,其下沉积物(081013-7)见波状层理,底部为具有斜层理的风成沙(081013-7)。KU16、KU11与KU12皆位于风蚀河谷谷坡。剖面KU18与KU19为圆沙古城东部风蚀河漫滩残存,剖面均见亚粘土及下部粉沙,胡(灰)杨等植物残存。KD1与KD2剖面位于喀拉墩一带,KD1为风蚀河床,KD2为河床西侧一柽柳沙堆。KU10与KU13剖面为古河床的风蚀露头,位置接近和田河(图1b)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2克里雅河下游沉积物剖面与OSL年龄样品

Fig. 2Sampled section: lithology and sediment OSL samples



光释光年龄样品均取自亚粘土层之下新开挖的沙质沉积物,样品埋藏深度与剖面剥离深度均大于50 cm。使用不锈钢罐避光条件下采集,铝箔迅速密封。实验室编号首序号12009样品5件OSL年龄由中国科学院寒区旱区环境工程研究所给出,2009年测。由内嵌90Sr/Y放射源Riso-TL/OSL-DA-15光释光年代分析仪测定(丹麦)等效剂量,其中除080319-25测定矿物为长石外其它皆为石英,含水率最高为3.1%,误差按50%计。首序号10G(2010年测)与11G(2011年测)样品13件年龄由中国地质科学院水文地质环境地质研究所光释光实验室给出,用Daybreak 2200(美国)光释光仪、801E辐照仪(β放射源90Sr-Y),剂量率约(0.103871Gy/Secβ)。所测矿物为石英,其中样品11G-228与11G-234选用粗颗粒(90~125 μm)单片再生法测量,预热温度260 ℃,循环比小于5%。其余选细颗粒(8~15 μm)简单多片再生法测得等效剂量,饱和指数法拟合。U、Th和K含量中子活化法测得,宇宙射线贡献据Prescott和Hutton推荐数据估计[37]。首序10G样品含水率按10%,11G按(5±1)%估算,Fleming法修正[38]。各实验室U、Th和K含量测定结果较一致(表1),年龄误差基本在10%内,且所测本区域沉积物光释光年龄与同层位植物14C年龄吻合较好[19],基本可信。KU3剖面底部样品080319-25虽然较之上另外2个样品年轻(图2),但在误差范围内3件样品年龄基本一致,且该样品所测矿物为长石,显示光释光方法在沙漠样品年龄测定方面的可靠。

Tab. 1
表1
表1克里雅河下游沉积物样品光释光年龄
Tab. 1OSL ages of the sediment samples at the lower reaches of the Keriya River in the Taklamakan Desert
剖面实验室号野外编号U(ppm)Th(ppm)K(%)等效剂量(Gy)年剂量(Gy/ka)年龄(ka)
KU110G-268080318-92.48±0.099.64±0.281.78±0.0616.69±0.803.63±0.154.6±0.30
KU210G-269080319-32.50±0.0911.1±0.311.61±0.0612.37±0.563.62±0.153.4±0.20
KU410G-270080321-11.69±0.077.50±0.231.73±0.0623.10±1.093.13±0.137.4±0.40
KU1110G-271081016-23.16±0.1114.2±0.381.70±0.0647.03±1.464.23±0.1711.1±0.60
KU1210G-272081022-32.10±0.088.00±0.241.87±0.0630.00±0.573.44±0.108.7±0.40
KU1310G-273081030-82.27±0.096.91±0.231.76±0.06138.59±3.033.30±0.1339.6±1.80
KU1410G-275081104-11.96±0.087.75±0.231.68±0.0620.09±0.223.20±0.166.3±0.30
KU1510G-276081106-21.87±0.077.12±0.211.82±0.0624.34±0.243.25±0.107.5±0.30
KU1010G-277081015-91.91±0.079.55±0.281.81±0.06153.42±8.793.48±0.1744.1±3.10
KU1811G-22820110215-42.277.771.6716.73±0.662.995.6±0.30
KU1911G-22920110220-32.078.521.6920.38±0.483.376.0±0.30
KD111G-23426-91.877.861.5424.32±1.552.768.8±0.70
KD211G-23526-101.996.681.6911.64±0.333.213.6±0.20
KU312009-28080319-212.59±0.106.59±0.201.78±0.0542.44±1.832.93±0.0814.50±0.74
KU312009-29080319-232.30±0.098.06±0.231.58±0.0540.44±1.112.77±0.0914.59±0.67
KU312009-30080319-252.40±0.098.06±0.231.73±0.0544.26±2.893.27±0.1213.53±0.90
KU512009-32081013-72.5±0.099.26±0.261.8±0.0516.52±0.633.13±0.095.28±0.25
KU1612009-37081107-12.52±0.098.63±0.251.72±0.0511.18±1.833.00±0.083.72±0.62

新窗口打开|下载CSV

4 结果

全新世OSL年龄样品数据量最多(图1b与表1)。自米萨来通往圆沙古城古河道一带,KU2剖面样品080319-3年龄为(3.4±0.2) ka,阶地KU1剖面样品080318-9年龄为(4.6±0.3) ka,阶地KU16样品081107-1在(3.72±0.62) ka;圆沙古城一带干三角洲东部剖面KU18和KU19样品20110215-4与20110220-3年龄分别在(5.6±0.3) ka与(6.0±0.3) ka(图2)。圆沙干三角洲最北剖面KU14样品081104-1与通往圆沙古城的古河道西测剖面KU4的样品080321-1年龄分别为(6.3±0.3) ka和(7.4±0.4) ka。喀拉墩遗址以北古河床剖面KD1沉积物样品26-9年龄为(8.8±0.7) ka,柽柳沙堆剖面KD2样品26-10为(3.6±0.2) ka,均分布在全新世。圆沙古城与喀拉墩古城间的剖面KU5,KU12与KU15的沉积物081013-7,081022-3与081106-2年龄分别为(5.28±0.25) ka、(8.7±0.4) ka和(7.5±0.3) ka。通往圆沙古城古河道西侧剖面KU3的3件样品080319-21、080319-23与080319-25年龄相近,分别为(14.5±0.74) ka、(14.59±0.67) ka和(13.53±0.90) ka,对应于末次盛冰期(Last Glacial Maximum, LGM)的末期。2处距离和田河较近剖面KU10及KU13样品081015-9与081030-8,分别为(44.1±3.1) ka和(39.6±1.8) ka,对应于深海氧同位素3阶段(Marine Isotope Stages 3, MIS3)。

5 讨论

5.1 河流的活动

河流沉积样品年龄代表了河流活动的时间。圆沙古城与喀拉墩古城周围三角洲及它们之间河流沉积物的OSL年龄分布于3—11 ka,反映了全新世河流的活动。KU2风蚀古河岸岸坡的样品080319-3年龄(3.4±0.2) ka显示当时河流的经过,而其阶地KU1应为约4.6±0.2 ka河流沉积而成(图2),约3.7 ka古河流或经圆沙古城西侧KU16剖面(样品081007-2年龄(3.72±0.62) ka)所在位置通往了北方墓地一带。剖面KU11与KU12则代表克里雅河在(11.1±0.6) ka与(8.7±0.4) ka的流经。KU5剖面底部风沙081013-7年龄(5.28±0.25) ka与上部河流沉积081013-5年龄(2.78±0.4) ka[19]反映该地区早期的风沙活动与后期河流的到达。KU4、KU14、KU15与KU16均显示全新世河流活动的范围之广。KU18与KU19(图2)沉积物年龄基本一致,反映克里雅河6.0 ka前后经过圆沙以东,14C数据[35]则显示之后2.3 ka河流曾再次流至并有植被发育。喀拉墩一带KD1与KD2(图2)显示约8.8 ka克里雅河流经,之后约3.6 ka到达。OSL年龄的空间分布(图1b)还表明克里雅河全新世期间在圆沙和喀拉墩之间的迁移,KU5、KU11与KU12应分别为河流在(2.78±0.4) ka[19]、(11.1±0.6) ka和(8.7±0.4 ka) 的迁移中留下的记录(图1b、图2)。

地势控制着水流方向,和田河与克里雅河下游地势总体向北倾斜,与现代和田河与克里雅河流动方向一致。但研究区位于两河之间洪泛平原,总体较为平坦,特别是在东西方向上(图1)高差并不是很大,河流容易在这里发生改道。但由于沙漠内部河流易遭受下渗和蒸发,策勒河等塔里木盆地南缘的小河在现有径流条件下很难到达到KU10与KU13样品所在位置,而根据遥感影像中OSL样品的空间分布(图1b),克里雅河全新世主要活动于圆沙与喀拉墩一带,据麻扎塔格古河床断面[12],约2万年以来和田河也主要活动于现代河流附近,因此仅大规模洪水时克里雅河或和田河才有可能发生大幅摆动而流动到KU10与KU13剖面位置。同时洪水期地下水水位还会抬升,从而为塔里木盆地南缘小河深入至沙漠提供了条件。剖面KU10与KU13处的河流沉积光释光年龄与牙通古斯河和安迪尔河下游河湖相沉积物[14]较一致,显示MIS3阶段末塔里木盆地南缘可能普遍发生洪泛。

剖面KU3自顶部至底部深度达5 m(图2),顶部1 m沉积物具有上部亚粘土和下部粉沙的二元结构,3件OSL样品的年龄均在14.5 ka前后,该剖面OSL年龄与克里雅河下游上段尧干托格拉克洪水堆积阶地一致[10, 14]图3),显示了克里雅河下游LGM末洪水对下游的影响范围。

图3

新窗口打开|下载原图ZIP|生成PPT
图3克里雅河下游尧干托格拉克的阶地

注:2008年张峰拍摄;图中数据来自文献[14]。
Fig. 3The sketch showing the terrace at Yohan Tohrak



5.2 气候背景

5.2.1 MIS3阶段 塔里木盆地河流洪水的产生有多种原因,如山区溃坝性洪水等突发性事件和降水变率的变化等[39],但总体上受控于气候冷暖干湿变化,如气温增高与太阳辐射增强引起的冰川融化,降水的增加和气候的变湿[14]等。KU10与KU13剖面样品年龄形成于约38—47 ka,据此期间昆仑山北坡黄土记录[40],塔克拉玛干沙漠未发现显著变湿,沙漠腹地KU10与KU13河湖沉积应不是平原区降水增加的结果。与之相应,38—47 ka 前后青藏高原冰川可能消融,克里雅河上游甜水海就获得了(41.706±4.749) ka前后高湖面的铀系测年数据[41,42]。青藏高原北麓冰消引发的河流径流增加或导致了本文KU10与KU13剖面及牙通古斯河与安迪尔河下游河湖沉积[14]在沙漠的形成。亦有天山南麓海拔高约1900 m木扎尔特河出山口测得冰碛物39.5(±10%) ka和40.4(±10%) ka的电子自旋共振(ESR)年龄[43],中亚兴都库什山冰碛物测得(36.6±3.0)—(40.9±3.5) ka的OSL年龄[44],昆仑山西部公格尔山冰碛测得(36.4±3.3)—(48.7±5.7) ka的ESR年龄[45],塔里木盆地南缘策勒河上游阶地沙楔测得(40.6±0.32) ka的OSL年龄[14]图1a、图4)等报道,这均暗示冰川的前进。以上冰川消融与冰进年龄数据的接近,但这并不相悖,MIS3阶段气候波动剧烈,冰消可能紧随冰进而发生。

图4

新窗口打开|下载原图ZIP|生成PPT
图4克里雅河流域沉积物OSL年龄与塔里木盆地河流及周边山脉沉积物测年数据

Fig. 4Plot showing sediment ages along the Keriya River and around the Tarim Basin



5.2.2 LGM末 LGM以来塔克拉玛干沙漠干湿变化似乎并不显著[11]。青藏高原曾可能发育亚极地型冰川[46],克里雅冰川前缘测得了(15.55±0.15) ka和(15.79±0.384) ka的冰碛物14C年龄[47],昆仑山山前策勒河阶地上发现有OSL年龄(18.3±1.3) ka的沙楔[14],破城子第3列终碛垄冰碛物测得13.6 ka(±10%)的ESR年龄[43]图1a、图4)。但LGM之后气温是波动上升的,冰川的融化可能再次在克里雅河发生洪泛,并约14 ka 前后在尧干托格拉克[10, 14]一带形成河湖沉积并深入到本文KU3剖面一带。青藏高原北缘也应发生相应的冰消和高湖面,崇测冰川LGM终碛垄前缘湖相沉积就测得了(14.93±0.37) ka的14C年龄[48]

5.2.3 全新世 MIS3阶段末与LGM末河洪沉积与冰进之后的冰消有较好的对应,全新世气候冷暖波动显著,也应发生相类似的过程。全新世早期,克里雅上游崇测冰川或在新仙女木期14C年龄(11.087±0.198) ka形成YD终碛垄[48],公格尔山也测得(11.2±0.1) ka与(10.2±0.3) ka 的冰碛物10Be年龄[49]图1a、图4);KU11剖面显示克里雅河于(11.1±0.6) ka在圆沙一带的活动,塔河中游也测得14C年龄(11.19±0.177) ka与(10.6±0.165) ka的湖相亚粘土沉积[50,51]。8.5 ka前后克里雅河一带冰川可能亦发生进退,克里雅冰川和崇测冰川8.5 ka前后形成终碛垄,公格尔山测得(8.4±0.4) ka的10Be 的冰碛物年龄,冰进似乎发生;在克里雅河中游普鲁羊场,一套黄土披覆于河流阶地,黄土底部OSL年龄(8.46±0.46) ka[52],其下部河流沉积或许记录了8.5 ka冰进后冰川消融产生的洪水,这与克里雅河下游喀拉墩和圆沙一带OSL年龄(8.8±0.7) ka和(8.7±0.4) ka的KD1与KU12剖面记录的河流活动,博斯腾湖底部OSL年龄(8.53±0.194) ka和(9.14±2.07) ka风成沙[53]之上湖相沉积开始堆积的时间较一致。4.2—3.8 ka前后北半球气候波动[54],崇测冰川和克里雅河上游冰川均形成终碛垄[47],公格尔山也测得(4.2±0.3) ka前后10Be年龄[49],青藏高原也被认为(3.8±0.6) ka发生冰进[55]。冰进后期往往发生冰消,KU16、KD2与KU2揭示克里雅河曾于(3.72±0.62) ka、(3.6±0.2) ka与(3.4±0.2) ka在沙漠中的发育或暗示了冰进后的消融。

全新世河流下游河洪事件光释光年龄与塔里木盆地周缘冰进冰消并不完全对应。如中游羊场遗址剖面夹层有机质AMS14C测年显示黄土在6.942—7.564 ka前后[52]发生堆积,之后未被河流冲蚀(也存在因构造抬升引起河流下切,后期洪水难再影响黄土堆积的可能),环境似乎开始变干,但本文克里雅河下游OSL年龄显示(7.4±0.4) ka、(7.5±0.3) ka、(6.3±0.3) ka、(6.0±0.3) ka、(5.6±0.3) ka与(5.28±0.25) ka依然有河流活动。此外,KU1阶地OSL年龄(4.6±0.3) ka与前人所测克里雅河下游另两处亚粘土沉积热释光年龄(4.48±0.22) ka与(4.74±0.24) ka[11],及塔河中游一带测得(4.497±0.097) ka亚粘土沉积物的14C年龄[50,51]均暗示4.5 ka前后的洪水泛滥,但塔里木盆地周缘似乎没有较显著的冰川进退记录与之相对应,其原因可能是由于年代学数据的缺少或早期热释光和14C年龄数据误差较大。

5.3 沙丘的形成

三角洲上沙丘发育的影响因素有很多,主要与风有关,但也还受其它如地形地貌[56]与河流等因素的影响[57]。克里雅河下游区域大气环流基本一致[58],地势总体平坦[9, 11-12, 23],河流很大程度上参与了沙丘的形成[12]并可能影响到其建造。在克里雅河下游多见亚粘土和粉沙互层河流沉积的风蚀残存(图5),可见河流沉积为沙丘形成提供了物源[1, 9]。圆沙三角洲一带粒度测定结果亦显示,河流沉积主要为粘土质粉沙,粉沙与极细沙组成,而沙丘沙粒度则总体稍粗,主要由粉沙和极细沙组成[59],显示了沙丘沙由河流沉积经风的分选和改造而成的过程。与牙通古斯河与安迪尔河下游[14]的情况一致,本文克里雅河下游最早河洪沉积记录的OSL年龄在MIS3阶段,自那时起,河流可能就已开始为沙丘发育提供物源了。

图5

新窗口打开|下载原图ZIP|生成PPT
图5圆沙古城沙丘与河流沉积风蚀残留

注:2008年张峰摄于(38°47′N; 81°35′E);沙质沉积上部具水平层理亚粘土。
Fig. 5A wind-eroded river bed residual near the Yuansha Site



朱震达先生曾根据喀拉墩和丹丹乌里克遗址的年代认为克里雅尾闾干三角洲与河流以西的沙丘形成于“汉唐以来”[9],但当时该区域更早时代的遗址尚未被报道,加之早期年代学数据极少,这一观点或需被重新认识。北方墓地、圆沙古城和喀拉墩遗址的存在说明克里雅河干三角洲曾经发育荒漠河岸林,流动沙丘主要是在河流改道和遗址废弃之后形成的,由于干三角洲为河流堆积形成,其形成主要在全新世,因此沙丘也应在这一时段以来形成。

另一方面,河流活动也可能影响到沙丘规模。圆沙和喀拉墩一带干三角洲上的新月型沙丘和沙丘链的相对低矮,或许是受河流摆动冲涤影响难以长期堆积的结果。在圆沙和喀拉墩之间的区域(KU5、KU11和KU12),及克里雅河与和田河之间的区域发育一定规模的纵向沙垄,可能与受河流作用较少而受风力作用较久有关。部分发育较为高大的沙丘,其下伏沉积年龄也的确较老,如克里雅河东岸尧干托格拉克一带LGM末河流阶地上的沙丘。

塔克拉玛干沙漠中的河流对地貌发育有着较为深刻的影响,而确如此前的讨论,即沙漠腹地克里雅河的河洪沉积与上游冰川进退相关,可认为现代塔克拉玛干沙漠地貌格局的形成是受控于气候变化的。

6 结语

通过发源于塔里木盆地周缘高山的河流在沙区的沉积物年龄,可认识塔克拉玛干沙漠腹地地貌形成与演化相关问题,但理想的数据较少。考察了沙漠深处塔里木盆地南缘克里雅河下游,采集了沉积物光释光样品。所测年龄结果集中分布在MIS3阶段的38—47 ka,LGM末14.5 ka与全新世11 ka、8—9 ka、5—6.5 ka、4.6 ka与3.4—3.7 ka前后。出露于地表河流沉积物年龄差距达数万年。全新世样品多分布于圆沙与喀拉墩干三角洲及其之间的地区,MIS3阶段样品接近和田河,LGM样品则离克里雅河稍远。河流沉积物反映了河洪泛滥,河流活动影响到地貌发育。克里雅河下游干三角洲的沙丘应形成于全新世以来。河流沉积年龄与塔里木盆地周缘山脉的冰进与冰退有一定对应。由于早期发布的沙漠内部河湖沉积14C年龄较少考虑碳库效应,冰碛物年龄测定数据也存在不一致现象,若将全新世塔克拉玛干沙漠洪水活动与冰川进退确定的联系起来,还存在诸多困难。但由于沙漠环境中沙粒具有曝光良好的特点,OSL方法提供了较其它手段更为可靠的年龄。特别是沙漠深处各河洪沉积物出现的时间,均对应着特殊的气候转折,是偶然还是必然,其背后的机制还有待进一步深入。

致谢

感谢浙江大学杨小平教授和中国科学院新疆生物与地理所周兴佳研究员对本文的修改建议;中国科学院西北生态环境资源研究院赵晖研究员、中国地质科学院水文地质环境地质研究所赵华研究员和王承敏工程师承担了光释光年龄样品的测定和分析,特表感谢!


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Zhu Zhenda, Wu Zheng, Liu Shu, et al. Introduction to the Deserts in China. rev. ed. Beijing: Science Press, 1980: 1-107.
[本文引用: 2]

[朱震达, 吴正, 刘恕, . 中国沙漠概论. 修订版. 北京: 科学出版社, 1980.]
[本文引用: 2]

Zhu Zhenda, Chen Zhiping, Wu Zheng, et al. Study on the Aeolian Geomorphology in the Taklimakan Desert. Beijing: Science Press, 1981.
[本文引用: 4]

[朱震达, 陈治平, 吴正, . 塔克拉玛干沙漠风沙地貌. 北京: 科学出版社, 1981.]
[本文引用: 4]

Yang Xiaoping. Loess deposits in the surrounding mountains of Tarim Basin, northwestern China
Arid Land Geography, 2000, 23(1): 13-18.

[本文引用: 2]

[杨小平. 塔里木盆地边缘山地的黄土沉积
干旱区地理, 2000, 23(1): 13-18.]

[本文引用: 2]

Fang Xiaomin, Lyu Lianqing, Yang Shengli, et al. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China
Science in China (Series D), 2001, 31(3): 177-184.

[本文引用: 3]

[方小敏, 吕连清, 杨胜利, . 昆仑山黄土与中国西部沙漠发育和高原隆升
中国科学(D辑: 地球科学), 2001, 31(3): 177-184.]

[本文引用: 3]

Sun J M, Liu T S. The age of the Taklimakan desert
Science, 2006, 312(5780): 1621.

DOI:10.1126/science.1124616URL [本文引用: 3]

Yang X P, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China: A critical review
Quaternary Science Reviews, 2011, 30(23): 3219-3233.

DOI:10.1016/j.quascirev.2011.08.009URL [本文引用: 3]

Zheng Hongbo, Wei Xiaochun, Tada R, et al. Late Oligocene-early Miocene birth of the Taklimakan Desert
PNAS, 2015, 112(25): 7662-7667.

DOI:10.1073/pnas.1424487112PMID:26056281 [本文引用: 2]
As the world's second largest sand sea and one of the most important dust sources to the global aerosol system, the formation of the Taklimakan Desert marks a major environmental event in central Asia during the Cenozoic. Determining when and how the desert formed holds the key to better understanding the tectonic-climatic linkage in this critical region. However, the age of the Taklimakan remains controversial, with the dominant view being from ~ 3.4 Ma to ~ 7 Ma based on magnetostratigraphy of sedimentary sequences within and along the margins of the desert. In this study, we applied radioisotopic methods to precisely date a volcanic tuff preserved in the stratigraphy. We constrained the initial desertification to be late Oligocene to early Miocene, between ~ 26.7 Ma and 22.6 Ma. We suggest that the Taklimakan Desert was formed as a response to a combination of widespread regional aridification and increased erosion in the surrounding mountain fronts, both of which are closely linked to the tectonic uplift of the Tibetan-Pamir Plateau and Tian Shan, which had reached a climatically sensitive threshold at this time.

Zhu Bingqi, Yu Jingjie, Qin Xiaoguang, et al. Formation and evolution of sandy deserts in Xinjiang: The palaeo-environmental evidences
Acta Geographica Sinica, 2013, 68(5): 661-679.

[本文引用: 2]

[朱秉启, 于静洁, 秦晓光, . 新疆地区沙漠形成与演化的古环境证据
地理学报, 2013, 68(5): 661-679.]

[本文引用: 2]

Zhu Zhenda, Lu Jinhua, Jiang Weizheng. Study on formation and development of aeolian landform and trend of environmental change at lower reach of the Keriya River, Taklimakan Desert
Journal of Desert Research, 1988, 8(2): 1-10.

[本文引用: 8]

[朱震达, 陆锦华, 江伟铮. 塔克拉玛干沙漠克里雅河下游地区风沙地貌的形成发育与环境变化趋势的初步研究
中国沙漠, 1988, 8(2): 1-10.]

[本文引用: 8]

Cao Qiongying, Xia Xuncheng. A preliminary study on the geomorphology and quaternary geology in the lower reaches of the Keliya River
Scientia Geographica Sinica, 1992, 12(1): 34-43.

[本文引用: 7]

[曹琼英, 夏训诚. 新疆克里雅河下游地貌与第四纪地质的初步研究
地理科学, 1992, 12(1): 34-43.]

[本文引用: 7]

Li Baosheng, Dong Guangrong, Zhu Yizhi, et al. The sedimentary environment and evolution of the loess and desert in the Tarim Basin since the Last Glaciation
Science in China (Series B), 1993, 23(6): 644-651.

[本文引用: 6]

[李保生, 董光荣, 祝一志, . 末次冰期以来塔里木盆地沙漠、黄土的沉积环境与演化
中国科学(B辑), 1993, 23(6): 644-651.]

[本文引用: 6]

Jin Heling, Dong Guangrong. Preliminary study on the role of river wriggling in the evolution of aeolian landforms in arid region: Taking Hotan River as an example
Journal of Desert Research, 2001, 21(4): 367-373.

[本文引用: 4]

[靳鹤龄, 董光荣. 试论干旱区河流在沙漠地貌发育中的作用: 以塔克拉玛干沙漠和田河流域为例
中国沙漠, 2001, 21(4): 367-373.]

[本文引用: 4]

Chang H, An Z S, Liu W G, et al. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin
Global and Planetary Change, 2012, 80: 113-122.

[本文引用: 1]

Yang X P, Preusser F, Radtke U. Late Quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits
Quaternary Science Reviews, 2006, 25(9/10): 923-932.

DOI:10.1016/j.quascirev.2005.06.008URL [本文引用: 16]

Zhou Xingjia, Zhu Feng, Li Shiquan. The formation and evolution of oasis in the Keriya River Valley
Quaternary Sciences, 1994, 14(3): 249-255.

[本文引用: 1]

[周兴佳, 朱峰, 李世全. 克里雅河绿洲的形成与演变
第四纪研究, 1994, 14(3): 249-255.]

[本文引用: 1]

Yang X P, Zhu Z D, Jaekel D, et al. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang, China: The relationship between high mountain glaciation and landscape evolution in foreland desert regions
Quaternary International, 2002, 97: 155-166.

[本文引用: 1]

Shi Qingdong, Guo Yuchuan, Zhou Xiaolong, et al. Mechanism of the influence of surface water and groundwater on vegetation pattern in Daliyaboyi oasis at the tail of Keriya river in Taklamakan Desert
Journal of Xinjiang University(Natural Science Edition), 2019, 36(3): 253-259, 286.

[本文引用: 2]

[师庆东, 郭玉川, 周小龙, . 塔克拉玛干沙漠克里雅河尾闾达理雅博依绿洲地表水、地下水对植被格局的影响机制
新疆大学学报(自然科学版), 2019, 36(3): 253-259, 286.]

[本文引用: 2]

Zhou Xingjia. Textual research on the matter of the Keriya River flowed into the Tarim River//Xinjiang Keriya River and the Taklamakan Desert Scientific Expedition Team. The Report of Scientific Exploration and Investigation in the Keriya River Valley and the Taklamakan Desert. Beijing: China Science and Technology Publishing House, 1991: 40-46.
[本文引用: 1]

[周兴佳. 克里雅河曾流入塔里木河的考证//新疆克里雅河及塔克拉玛干科学考察队. 克里雅河及塔克拉玛干科学探险考察报告. 北京: 中国科学技术出版社, 1991: 40-46.]
[本文引用: 1]

Zhang Feng, Wang Tao, Yimit·Hamid, et al. Hydrological changes and settlement migrations in the Keriya river delta in central Tarim Basin ca. 2.7-1.6 ka B.P.: Inferred from 14C and OSL chronology
Science China: Terrae, 2011, 41(10): 1495-1504.

[本文引用: 6]

[张峰, 王涛, 海米提·依米提, . 2.7—1.6ka B.P.塔克拉玛干沙漠腹地克里雅河尾闾绿洲的变迁
中国科学: 地球科学, 2011, 41(10): 1495-1504.]

[本文引用: 6]

Abdurusul Idris, Falankefu G D, Liu Guorui, et al. Summaries of the archaeological investigation along the Keriya River in Xinjiang
Archaeology, 1998(12): 28-37.

[本文引用: 3]

[伊弟利斯·阿不都热苏勒, 高亨娜·迪班娜·法兰克福, 刘国瑞, . 新疆克里雅河流域考古调查概述
考古, 1998(12): 28-37.]

[本文引用: 3]

Yang Youlin. Scientists from China and the Federal Republic of Germany jointly visited the Taklamakan Desert
Journal of Desert Research, 1986, 6(4): 72-73.

[本文引用: 1]

[杨有林. 中国、联邦德国科学家联合考察塔克拉玛干沙漠
中国沙漠, 1986, 6(4): 72-73.]

[本文引用: 1]

Wen Kang. Taklamakan Desert comprehensive examination team completed investigation at the Keriya River downstream
Arid Zone Research, 1988(4): 46.

[本文引用: 1]

[文康. 塔克拉玛干沙漠综考队完成克里雅河下游考察
干旱区研究, 1988(4): 46.]

[本文引用: 1]

Zhou Xingjia, Li Baosheng, Zhu Feng, et al. The research on the development and evolution of the oasis of Keriya river in the Tarim Basin of Xinjiang
Yunnan Geographic Environment Research, 1996, 8(2): 44-57.

[本文引用: 7]

[周兴佳, 李保生, 朱峰, . 南疆克里雅河绿洲发育和演化过程研究
云南地理环境研究, 1996, 8(2): 44-57.]

[本文引用: 7]

Li Baosheng, Zhang David Dian, Zhou Xingjia, et al. Study of sediments in the Yutian-Hotan Oasis, South Xinjiang, China
Acta Geologica Sinica, 2002, 76(2): 287.

[本文引用: 2]

[李保生, David Dian ZHANG, 周兴佳, . 于田—和田绿洲沉积物的初步研究
地质学报, 2002, 76(2): 287.]

[本文引用: 2]

Jin Heling, Dong Guangrong, Jin Jiong. Environmental and climatic changes in the interior of Taklimakan Desert since Late Glacial Age
Journal of Desert Research, 1994, 14(3): 31-37.

[本文引用: 3]

[靳鹤龄, 董光荣, 金炯. 塔克拉玛干沙漠腹地晚冰期以来的环境与气候变化
中国沙漠, 1994, 14(3): 31-37.]

[本文引用: 3]

Deevey E S, Gross M S, Hutchinson G E, et al. The natural 14C contents of materials from hard-water lakes
PNAS, 1954, 40(5): 285-288.

PMID:16589473 [本文引用: 1]

Lu Yanchou, Zhang Jingzhao, Zhao Hua. Paleodose determination methods of TL dating of the Quaternary sediments
Nuclear Techniques, 1991, 14(2): 109-113.

[本文引用: 1]

[卢演俦, 张景昭, 赵华. 第四纪沉积物热释光测年中古剂量的测定方法
核技术, 1991, 14(2): 109-113.]

[本文引用: 1]

Lai Zhongping, Ou Xianjiao. Basic procedures of optically stimulated luminescence (OSL) dating
Progress in Geography, 2013, 32(5): 683-693.

DOI:10.11820/dlkxjz.2013.05.001 [本文引用: 1]
Since its development in the 1980s, optically stimulated luminescence(OSL) dating has been improved significantly. Even though the error is larger(normally 5%~10%), it has obvious advantageous over radiocarbon dating: larger dating range from decadal up to ~700 ka, abundant dating materials(quartz or feldspars), dating directly the sediment, etc. The purpose of the paper is to introduce the method to those geoscientists who intend to use OSL dating for chronological control so that the sampling in the field will satisfy OSL chronologists. We describe the procedures of OSL dating in the luminescence dating laboratory of Qinghai Institute of Salt Lakes, CAS, including sampling, pretreatment, equivalent dose (<i>De</i>) and dose rate determination. We make some suggestions for OSL sampling from strata or drilling cores. In our laboratory we combine the single aliquot regenerative-dose(SAR) and standardised growth curve(SGC) techniques together for De determination, which we call SAR-SGC method with the advantage of reducing machine occupation time for at least 60% compared to that of the SAR method. The abstract of pure quartz of middle grains (38~63 μm) using fluorocilicic acid (H<sub>2</sub>SiF<sub>6</sub>) could be much easier and simpler compared to that of coarse grains(90~120 μm) and fine grains(4~ 11 μm), without the use of dangerous hydrofluoric acid(HF). Our systematic investigations on the use of SAR-SGC method for different sediments(aeolian, lacustrine, marine, and glacial, etc.) have shown that the method is valid, even though some factors may result in complexity, e.g. the contamination of heavy minerals and feldspars, the thermal history of quartz grains, etc. Since 2008, we have been applying, with success, the SAR-SGC method to dating loess, desert, lacustrine, ocean, glacial, earthquake, and archaeological site sediments, etc.
[赖忠平, 欧先交. 光释光测年基本流程
地理科学进展, 2013, 32(5): 683-693.]

[本文引用: 1]

Stokes S, Bailey R M, Fedoroff N, et al. Optical dating of aeolian dynamism on the west African Sahelian margin
Geomorphology, 2004, 59(1/4): 281-291.

DOI:10.1016/j.geomorph.2003.07.021URL [本文引用: 1]

Zhao Hua, Lu Yanchou, Wang Chengmin, et al. A review of OSL dating for water-laid deposits: Progress and prospect
Nuclear Techniques, 2011, 34(2): 82-86.

[本文引用: 1]

[赵华, 卢演俦, 王成敏, . 水成沉积物释光测年研究进展与展望
核技术, 2011, 34(2): 82-86.]

[本文引用: 1]

Zhang Keqi, Wu Zhonghai, Lyu Tongyan, et al. Review and progress of OSL dating
Geological Bulletin of China, 2015, 34(1): 183-203.

[本文引用: 1]

[张克旗, 吴中海, 吕同艳, . 光释光测年法: 综述及进展
地质通报, 2015, 34(1): 183-203.]

[本文引用: 1]

Huang Jingjing, Zhang Feng, Shi Qingdong, et al. Variation characteristics for temperature and relative humidity of the natural oasis in the hinterland of the Taklamakan Desert for 2015-2016
Journal of Xinjiang University (Natural Science Edition), 2019, 36(3): 267-275.

[本文引用: 1]

[黄晶晶, 张峰, 师庆东, . 2015―2016年塔克拉玛干沙漠腹地天然绿洲气温及相对湿度变化特征
新疆大学学报(自然科学版), 2019, 36(3): 267-275.]

[本文引用: 1]

Yang Yichou. Formation and evolution on Keriya River landforms
Arid Land Geography, 1990, 13(1): 37-45.

[本文引用: 2]

[杨逸畴. 克里雅河地貌的形成与演化
干旱区地理, 1990, 13(1): 37-45.]

[本文引用: 2]

Zhao Jingdong, Liu Shiyin, Wang Jie, et al. Glacial advances and ESR chronology of the Pochengzi Glaciation, Tianshan Mountains, China
Science in China: Series D, 2009, 39(12): 1681-1687.

[本文引用: 1]

[赵井东, 刘时银, 王杰, . 天山破城子冰期的冰进及ESR年代学研究
中国科学(D辑), 2009, 39(12): 1681-1687.]

[本文引用: 1]

Xia Qianqian, Zhang Feng. AMS 14C dating and related historical geography question proposal at the Yuansha Delta in the central Taklamakan Desert
Quaternary Sciences, 2016, 36(5): 1280-1292.

[本文引用: 2]

[夏倩倩, 张峰. 塔克拉玛干沙漠腹地克里雅河尾闾圆沙三角洲AMS 14C年代学测定及相关历史地理问题刍议
第四纪研究, 2016, 36(5): 1280-1292.]

[本文引用: 2]

Abdurusul Idris, Li Wenying, Hu Xingjun. The preliminary study of Xiaohe Graveyard
China Border Area Study, 2012(190): 15-27.

[本文引用: 1]

[伊弟利斯·阿不都热苏勒, 李文瑛, 胡兴军. 小河文化遗存初探
中国边政, 2012(190): 15-27.]

[本文引用: 1]

Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations
Radiation Measurements, 1994, 23(2/3): 497-500.

DOI:10.1016/1350-4487(94)90086-8URL [本文引用: 1]

Prescott J R, Robertson G B. Sediment dating by luminescence: A review
Radiation Measurements, 1997, 27(5-6): 893-922.

DOI:10.1016/S1350-4487(97)00204-7URL [本文引用: 1]

Shen Yongping, Ding Yongjian, Liu Shiyin, et al. An increasing glacial lake outburst flood in Yarkant River, Karakorum in past ten years
Journal of Glaciology and Geocryology, 2004, 26(2): 234.

[本文引用: 1]

[沈永平, 丁永建, 刘时银, . 近期气温变暖叶尔羌河冰湖溃决洪水增加
冰川冻土, 2004, 26(2): 234.]

[本文引用: 1]

Li Baosheng, Wen Xiaohao, Zhang David Dian, et al. Millennial-scale climate fluctuations during the last interstadial recorded in the AQS3 segment of the Aqiang Loess section in the north piedmont of the Kunlun mountains
Quaternary Sciences, 2008, 28(1): 140-149.

[本文引用: 2]

[李保生, 温小浩, David Dian ZHANG, . 昆仑山北麓阿羌黄土剖面AQS3层段记录的末次间冰阶千年尺度的气候波动
第四纪研究, 2008, 28(1): 140-149.]

[本文引用: 2]

Li Shijie, Zhang Hongliang, Shi Yafeng, et al. A high resolution MIS 3 environmental change record derived from lacustrine deposit of Tianshuihai lake, Qinghai-Tibet Plateau
Quaternary Sciences, 2008, 28(1): 122-131.

[本文引用: 2]

[李世杰, 张宏亮, 施雅风, . 青藏高原甜水海盆地MIS 3阶段湖泊沉积与环境变化
第四纪研究, 2008, 28(1): 122-131.]

[本文引用: 2]

Li Bingyuan. The last greatest lakes on the Xizang (Tibetan) Plateau
Acta Geographica Sinica, 2000, 55(2): 174-182.

DOI:10.11821/xb200002005 [本文引用: 1]
The paleo lake shorelines and lake deposits are widely distributed in the lake basins on the Xizang (Tibetan) Plateau. Deduced from the highest lake shorelines, the lakes area during the last Greatest Lake Period (GLP) was several to tens times larger than their present area. However, there are still divarication on its age, e.g. some thought GLP was formed in the early and middle Holocene, some thought GLP in the Last Glacial Interval, also some thought in the early middle period of Pleistocene. There is no final conclusion related to the last GLP on the total plateau. According to the analyses of the lake deposits and 14 C dating from 12 lakes such as Tianshuihai Lake, etc., the GLP on the Xizang Plateau was formed generally from 50 ka BP to 30~20 ka BP, even some appeared in a little newer time. Because of the difference of climatic environment and lake landform in different areas, there are also differentiation on the end age of GLP and ratio of paleo and present lake area. The GLP in the northern part of the Plateau and the middle west part of Qiangtang Plateau approximately ended at 25 ka BP while the ratio was bigger between paleo and present lake area. It was a little later to the closed time of the lakes in the south and east part of the Plateau. Some big lakes even were exterior lakes in the late Holocene while the ratio was smaller between paleo and present lake area. The GLP that represented a special warm humid stage in Xizang area generally appeared from 40 to 25 ka BP. This corresponded to the third stage of marine oxygen isotope records and Last Glacial Interval. During this period, the lake areas were bigger and lakes levels were higher than those in the best period of the Holocene. Reflected by the relics of high lake level, the climate in the Xizang area was abnormally warm in the Last Glacial Interval compared with the records of environmental change from Antarctica and Greenland. This was also documented by the records from ice core and lake deposits, even reflected in the Tengger Desert to the north of the Plateau and north China area. It may be related to two factors: one was that the incidence solar radiation between 50°N 30°S was higher than that in the high latitude area in GLP; the other was that the powerful Australia high pressure might get across the equator line in that period. This caused the strong summer monsoon on the Plateau that brought plenty of water content from the south to the north interior land.
[李炳元. 青藏高原大湖期
地理学报, 2000, 55(2): 174-182.]

[本文引用: 1]

Yang Xiaoping. The relationship between oases evolution and natural as well as human factors: Evidences from the lower reaches of the Keriya River, southern Xinjiang, China
Earth Science Frontiers, 2001, 8(1): 83-89.

[本文引用: 3]

[杨小平. 绿洲演化与自然和人为因素的关系初探: 以克里雅河下游地区为例
地学前缘, 2001, 8(1): 83-89.]

[本文引用: 3]

Owen L A, Kamp U, Spencer J Q, et al. Timing and style of Late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: A review and revision of the glacial chronology based on new optically stimulated luminescence dating
Quaternary International, 2002, 97: 41-55.

[本文引用: 1]

Wang Jie, Zhou Shangzhe, Zhao Jingdong, et al. Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern Pamer, China
Science China: Terrae, 2011, 41(3): 350-361.

[本文引用: 2]

[王杰, 周尚哲, 赵井东, . 东帕米尔公格尔山地区第四纪冰川地貌与冰期
中国科学: 地球科学, 2011, 41(3): 350-361.]

[本文引用: 2]

Shi Yafeng, Zheng Benxing, Yao Tandong. Glaciers and environments during the Last Glacial Maximum (LGM) on the Tibetan Plateau
Journal of Glaciology and Geocryology, 1997, 19(2): 97-113.

[本文引用: 2]

[施雅风, 郑本兴, 姚檀栋. 青藏高原末次冰期最盛时的冰川与环境
冰川冻土, 1997, 19(2): 97-113.]

[本文引用: 2]

Li Shijie, Chen Wei, Jiang Yongjian, et al. Geological records for Holocene climatic and environmental changes derived from glacial, periglacial and lake sediments on Qinghai-Tibetan Plateau
Quaternary Sciences, 2012, 32(1): 151-157.

[本文引用: 4]

[李世杰, 陈炜, 姜永见, . 青藏高原全新世气候环境变化的冰川、冰缘和湖泊沉积记录
第四纪研究, 2012, 32(1): 151-157.]

[本文引用: 4]

Jiao Keqin, Yao Tandong, Li Shijie. Evolution of glaciers and environment in the west Kunlun Mountains during the past 32 ka
Journal of Glaciology and Geocryology, 2000, 22(3): 250-256.

[本文引用: 4]

[焦克勤, 姚檀栋, 李世杰. 西昆仑山32ka来的冰川与环境演变
冰川冻土, 2000, 22(3): 250-256.]

[本文引用: 4]

Seong Y B, Owen L A, Yi C L, et al. Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet
Geological Society of America Bulletin, 2009, 121(3/4): 348-365.

DOI:10.1130/B26339.1URL [本文引用: 3]

Feng Qi, Li Zhenshan, Chen Guangting. Grain size characteristics of sedimentary and the climatic change in middle reaches of Tarim River
Acta Sedimentologica Sinica, 1996, 14(Suppl.1): 227-233.

[本文引用: 3]

[冯起, 李振山, 陈广庭. 塔里木河中游地区全新世沉积物的粒度特征及意义
沉积学报, 1996, 14(Suppl.1): 227-233.]

[本文引用: 3]

Feng Qi, Wang Jianmin. An evolution of Holocene environment in the north of Taklimakan Desert (Ⅱ)
Acta Sedimentologica Sinica, 1998, 16(2): 129-133.

[本文引用: 3]

[冯起, 王建民. 塔克拉玛干沙漠北部全新世环境演变(Ⅱ)
沉积学报, 1998, 16(2): 129-133.]

[本文引用: 3]

Han W X, Yu L P, Lai Z P, et al. The earliest well-dated archeological site in the hyper-arid Tarim Basin and its implications for prehistoric human migration and climatic change
Quaternary Research, 2014, 82(1): 66-72.

DOI:10.1016/j.yqres.2014.02.004URL [本文引用: 3]

Chen Fahu, Huang Xiaozhong, Yang Meilin, et al. Westerly dominated Holocene climate model in arid central Asia: Case study on Bosten Lake, Xinjiang, China
Quaternary Sciences, 2006, 26(6): 881-887.

[本文引用: 2]

[陈发虎, 黄小忠, 杨美临, . 亚洲中部干旱区全新世气候变化的西风模式: 以新疆博斯腾湖记录为例
第四纪研究, 2006, 26(6): 881-887.]

[本文引用: 2]

Mayewski P A, Rohling E E, Curt Stager J, et al. Holocene climate variability
Quaternary Research, 2004, 62(3): 243-255.

DOI:10.1016/j.yqres.2004.07.001URL [本文引用: 1]

Dortch J M, Owen L A, Caffee M W. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen
Quaternary Science Reviews, 2013, 78: 188-208.

DOI:10.1016/j.quascirev.2013.07.025URL [本文引用: 1]

Yang X P, Scuderi L, Liu T, et al. Formation of the highest sand dunes on Earth
Geomorphology, 2011, 135(1-2): 108-116.

DOI:10.1016/j.geomorph.2011.08.008URL [本文引用: 1]

Bullard J E, Mctainsh G H. Aeolian-fluvial interactions in dryland environments: Examples, concepts and Australia case study
Progress in Physical Geography, 2003, 27(4): 471-501.

[本文引用: 1]

Han Yongxiang, Fang Xiaomin, Song Lianchun, et al. A study of atmospheric circulation and dust storm causes of formation in the Tarim Basin: The restructured wind field by shapes of dune and observed prevailing wind
Chinese Journal of Atmospheric Sciences, 2005, 29(4): 627-635.

[本文引用: 1]

[韩永翔, 方小敏, 宋连春, . 塔里木盆地中的大气环流及沙尘暴成因探讨: 根据沙漠风积地貌和气象观测重建的风场
大气科学, 2005, 29(4): 627-635.]

[本文引用: 1]

Xia Qianqian, Ma Jiaju, Zhang Feng. The grain size parameters measurment of sediment at the Yuansha Delta in Central Taklimakan Desert
Journal of Xinjiang University (Natural Science Edition), 2014, 31(1): 12-16, 127.

[本文引用: 1]

[夏倩倩, 马家驹, 张峰. 塔克拉玛干沙漠腹地克里雅河尾闾圆沙三角洲沙质沉积物粒度特征
新疆大学学报(自然科学版), 2014, 31(1): 12-16, 127.]

[本文引用: 1]

相关话题/数据 环境 地貌 青藏高原 科学