删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

物质循环科学的研究对象、理论与方法

本站小编 Free考研考试/2021-12-29

袁增伟,, 程明今污染控制与资源化研究国家重点实验室,南京大学环境学院,南京 210023

Object, theories and methods of material cycling science

YUAN Zengwei,, CHENG MingjinState Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

收稿日期:2020-11-20修回日期:2021-03-11网络出版日期:2021-03-25
基金资助:国家****科学基金项目.41925004


Received:2020-11-20Revised:2021-03-11Online:2021-03-25
作者简介 About authors
袁增伟,男,河南平顶山人,教授,主要从事物质循环及其环境效应研究。E-mail: yuanzw@nju.edu.cn




摘要
人类活动的一项基本功能是从自然界不断开采资源,并将其加工成各种产品来满足生产和生活需要,同时向环境中排放污染物。因此,从宏观化学物质循环的角度来看,人类活动就是将地球表层物质不断进行时空转运和形态重构的过程。日益增强的人类活动已经成为影响地球表层物质循环格局、过程及其生态环境效应的主要驱动力,并引发区域性资源短缺和环境污染问题。为了推动资源与环境可持续利用,亟待发展物质循环科学,研究人类活动作用下的物质循环格局、过程与效应,发现物质的资源属性与环境属性相互转换规律,阐释“人类活动-资源消耗-污染物排放-环境归趋-环境效应”之间的互馈机制和响应关系,研发关键废物循环技术。本文界定了物质循环科学的研究视角与对象,并将其定义为一门研究人类活动作用下的地球表层物质循环路径、格局、过程与效应变化规律的学科;阐释了以人类矿床学为核心的物质循环科学理论体系,在此基础上明晰了物质循环格局与过程、废物循环技术、污染物排放的环境效应等相关方向的研究内容与方法;厘清了物质流分析、排放清单、废物循环技术、环境归趋与环境效应等研究方向的内在逻辑关系,并分析了物质流动路径中各过程之间的数据融合方法。
关键词: 物质循环科学;资源流动;排放清单;环境归趋;环境效应;固废资源化

Abstract
An important part of human activities is the continuously mining and processing of natural resources, and then transforming them into various products to meet the demand of production and consumption. Pollutants are discharged along the life cycle processes from mining to processing, production, consumption, and even waste management. From the perspective of material cycling, human activities are a fundamental way to relocate and reconstruct materials on the surface of the Earth. Nowadays, intensified human activities are altering the pathways and the spatial distribution of material cycles on the Earth’s surface, and furthermore, causing resources depletion and environmental pollution. Therefore, closing material cycling loop is vital for promoting the sustainability of resources and environment. Material cycling science and technology explores material cycling patterns, dynamic processes, and the associated environmental effects, discovers rules of mutual conversions between resource- and environment-character of materials, explains feedbacks and responses between ‘human activities-resources exploitation and utilization-pollutant emissions-environmental fate-environmental effect’, and develops waste recycling technologies. In this article, we firstly delineated the research perspectives, object and boundary, defined material cycling science as a discipline that explores paths, patterns, processes and effects of material cycling on the surface of the Earth. And then, we shed light on the theoretical framework with Anthropogenic Depositology as the core, which is built in 3 parts: material cycling patterns and processes, waste recycling technologies and environmental effects of emissions, and research content and methods of the discipline. We also clarified the logical relationships among the concepts of material flow analysis, emission inventory, resources recycling technology, environmental fate, and environmental effect, as well as the life-cycle data processing methods.
Keywords:material cycling science;resources flow;emission inventory;environmental fate;environmental effect;solid waste recycling


PDF (2583KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
袁增伟, 程明今. 物质循环科学的研究对象、理论与方法. 资源科学[J], 2021, 43(3): 435-445 doi:10.18402/resci.2021.03.01
YUAN Zengwei, CHENG Mingjin. Object, theories and methods of material cycling science. RESOURCES SCIENCE[J], 2021, 43(3): 435-445 doi:10.18402/resci.2021.03.01


1 引言

物质循环是指在自然力和人类活动共同驱动下的地球表层物质发生的时空迁移和形态重构过程。物质循环是维系人类资源供给与环境发展的主要途径,也是持续改变地球表层物质时空分布和赋存形态的重要因素。这里的物质循环既包括人类活动造成的自然资源/产品/废弃物流动,也涵盖环境介质中废弃物、污染物的时空迁移与生物地球化学反应。物质循环的自然驱动力主要包括地质构造运动、风化和侵蚀等,而人类活动驱动力则是指涵盖自然资源开采加工、产品生产使用、废物处理处置与污染物排放等在内的所有人类生产和消费活动[1]。一般而言,自然力作用下的物质循环过程较为缓慢、稳定和持久,而人类活动驱动的物质循环过程则较为剧烈、短暂且多样化。现实世界的物质循环往往是二者共同作用的结果。

自工业革命以来,人类活动对物质循环的影响不断增强,并已经成为影响地球表层物质循环路径、格局及效应变化的主要驱动力[2,3]。根据联合国环境署最新报告[4],1970—2017年间全球主要自然资源开采量从267亿t增长至886亿t。人类活动的一种基本表现形式是不断从自然界开采资源,将其加工成各种产品来满足生产和生活需要,生产和消费全过程都会向环境中排放污染物[5]。因此,从宏观化学物质循环的角度来看,人类活动就是将地球表层物质不断进行时空转运和形态重构的过程。伴随着这种剧烈的人类活动,自然力驱动下的物质循环路径和格局被改变,进而引发了区域性资源短缺和环境污染问题。因此,要破解资源与环境可持续利用难题,必须深刻理解人类活动作用下的物质循环路径与格局演变规律,科学评估这些路径与格局变化带来的资源和环境效应,研发关键废物循环技术,推动地球表层物质高效、闭路、稳定循环。

目前涉及物质循环的研究多是将物质循环过程分为资源开发利用、产品加工制造、产品消费使用、废物处理处置、污染物排放、环境归趋和环境效应等单个或者几个过程开展研究[6]。资源开发利用和产品加工制造过程研究一方面侧重于各种资源高效利用和环保技术开发,另一方面是运用物质流分析方法刻画物质代谢过程[7,8]。产品消费使用系统的研究多集中在消费行为特征及其造成的资源消耗和污染物排放分析方面,环境行为动因及其调控也是该领域研究的热点[7]。废物处理处置与污染物排放研究主要集中在各类污染控制技术研发和高时空分辨率污染源清单构建方面[9,10,11],尤其是新型污染物[12]、痕量高毒性污染物控制技术及人为源污染物排放的质量、形态和时空分布特征。环境归趋研究则主要集中在污染物进入环境介质后的迁移转化过程机理,并模拟污染物排放可能造成的特定环境介质中污染物浓度变化。环境效应研究主要关注环境暴露剂量测算和剂量-效应关系建立两个方面,随着测量仪器精度的提高以及环境毒理学、环境医学和流行病学等领域的发展,污染物在生物体的富集机制[13,14,15]、人体健康损害评估[16,17]等方面取得了一系列研究成果。然而,这种基于单一或几个过程的研究忽视了“人类活动-资源消耗-污染物排放-环境归趋-环境效应”之间的互馈机制和响应关系,无法准确量化特定人类活动的资源和环境效应,难以支撑根源性、系统性、针对性的资源环境可持续发展方案制定。

综上所述,在资源环境可持续发展研究领域,以物质循环过程为研究对象的方法学和实证研究逐渐成为热点,学科交叉的广度和深度不断加强,学科体系日臻完善。如国务院学位委员会、教育部2010年印发的《学位授予和人才培养学科目录》中首次设置“资源循环科学与工程(081303T)本科专业,截至2019年年底全国共有30所院校开设此专业。在国家自然科学基金委“工程与材料科学部”的“E04.矿业与冶金工程”下专门设置了“E0415.资源循环利用”方向;在“E10.环境工程”下也设置了“E1006.固废资源转化与安全处置”方向。

为了克服以往局部过程研究带来的视角、理论和方法局限,本文尝试提出建立物质循环科学(Material Cycling Science)的学科概念,在统一的学科框架下,可以:①从物质资源和环境属性交替变换的视角统筹研究资源和环境问题,体现了物质属性的一体两面特征及资源环境问题的不可分割性;②从物质循环生命周期过程来审视人类活动与资源环境问题,有助于规避局部过程及单一资源利用或环境保护研究可能得出的片面结论;③从物质循环路径与效应定量分析的角度构建“人类活动-资源消耗-污染物排放-环境归趋-环境效应”之间的响应关系,切实推动学科交叉的广度和深度;④从物质循环分析精度来看,不仅研究物质循环路径、通量、强度、效率,还刻画其时空异质性和赋存形态变化/转化规律。时至今日,物质循环科学具备了成为一门学科所需要的独特研究对象、理论体系与方法论。

2 研究对象

广义的物质循环是一个宽泛的概念,不同自然科学学科基于各自的研究目的和任务,分别从不同角度定义了“物质循环”的内涵。例如,生物地球化学循环(Biogeochemical Cycles)偏重生物体与无机环境间的物质交换[18],地球化学循环(Geochemical Cycles)更侧重地球内部与表层系统间的物质交 换[19]。然而,这些学科都是将“物质循环”研究中涉及到的人类活动作为黑箱或灰箱处理,无法解析特定人类活动造成的物质循环路径变化及其资源环境影响,难以从人类活动本身提出解决资源环境问题的根源性方案。

因此,为了科学评估人类活动造成的物质循环格局变化及其产生的资源环境效应,本文将物质循环科学所指的“物质”定义为具有资源和环境属性的宏观化学物质,包括资源(resources)、产品(products)、废物(wastes)、污染物(pollutants)等;“物质循环”特指人类活动影响下的具有特定时空尺度的地球表层物质迁移和转化过程。与生物地球化学循环、地球化学循环等学科相比,物质循环科学所研究的“物质循环”具有3个特征:以人类活动驱动为主导,兼顾人类经济社会系统内部的物质流动和环境介质中的迁移转化,统筹考虑物质的资源和环境属性。概括地说,物质循环科学是一门研究人类活动作用下的地球表层物质循环路径、格局、过程与效应变化规律的学科。

为进一步阐释物质循环科学所研究的“物质循环”的内涵、边界以及与其他学科的区别,可以将广义物质循环以时空尺度为轴坐标划分成不同子域(图1)。其中,物质循环科学所定义的狭义物质循环涵盖短期、中期、长期3个时间尺度,跨越中观、宏观两个空间尺度。该时空尺度内的物质循环是由人类活动主导、自然力共同驱动的结果,如流域氮磷循环及其造成的富营养化效应[20,21,22,23]、全球磷循环及其引发的磷矿石资源耗竭[24,25]、农田施肥及土壤磷累积[26,27,28]、国家尺度磷排放清单等[29,30,31,32]。相较而言,微观物理、生物、化学反应研究的物质循环处在“短期-微观”尺度,更侧重于短时间内物质迁移和形态转化过程机理;而地球化学循环则研究“长期-宏观”尺度的地球各圈层间的元素分布,尤其是地质构造运动造成的物质运移。

图1

新窗口打开|下载原图ZIP|生成PPT
图1物质循环的时空尺度

Figure 1Spatiotemporal scale of material cycling



在研究时空边界内(图1小圈),物质循环科学建立了“开采、生产、使用、存储、报废、排放”的物质循环过程概念模型(图2),用以定量分析人类经济社会系统内部的物质流动路径,以及人类活动如何造成资源和环境影响。同时,物质循环科学强调物质的资源和环境属性是相伴而生且相互转化(如磷赋存于磷矿石中呈现资源属性,而排放入水环境中则呈现环境污染属性),因此,相比于资源循环科学与工程、污染物环境行为等学科,物质循环科学更关注人类活动、资源消耗、污染物排放、环境归趋、环境效应之间的互馈机制和响应关系。

图2

新窗口打开|下载原图ZIP|生成PPT
图2物质循环科学的概念范畴体系

Figure 2Concept and scope of material cycle science



3 理论体系

3.1 概念范畴体系

物质循环科学是综合利用资源学、地理学、环境学、工程学的理论与方法研究物质循环格局、过程与效应的交叉学科。其研究体系主要分为物质循环格局与过程、废物循环利用、污染物排放的环境效应3个部分(图2)。其中,物质循环格局与过程是基于人类生产生活需要引起的物质流动过程,废物循环技术是人类主动改变物质流动路径与方向的过程,污染物排放的环境效应是物质进入环境后的自然迁移转化过程。

(1)物质循环格局与过程。在人类活动和自然力的共同作用下,物质沿着资源开发利用生命周期过程按照“开采、生产、使用、存储、报废、排放”的路径流动,同时发生资源属性和环境属性的交替变化,从而影响资源供给与环境承载力[33]。以磷素为例:人类大量开采磷矿石,生产各种含磷产品并满足生产和消费使用,此过程向环境中排放大量磷,从而加剧了水体富营养化风险和陆地磷矿资源短缺危机[34,35]。依据使用价值的不同,可以将物质循环过程中的存在形式分成3种:①资源或者产品,即存在使用价值,可以直接利用或者加工后利用的物质;②废弃物,指资源富集程度较高、暂时失去使用价值但具备循环利用潜力,在可接受的成本范围内能够被提取或转化成人类所需原料或产品;③污染物,是指排放进入且高度分散于环境介质中、直接或间接造成生态损害的有害排放物。物质循环格局包含两个方面的内涵,一方面指物质的流动路径,另一方面指物质流动路径的空间配置;而过程则是指物质循环格局在一个或多个因素的作用下随着时间推移而发生的动态变化。

(2)废物循环技术。废物循环利用是物质的资源与环境属性转换过程,是人类主动调控物质循环路径的重要手段。然而,单从某一过程或技术视角研究废物循环利用,可能会局限于单一时空尺度、单一过程、单一物质、单一效应。因此,需要建立多时空尺度的物质闭路循环理论方法,尤其是涵盖人类矿床探测(再生资源储量、分布、形态及其富集规律)、开采(废物资源化技术)、利用(再生资源产业链)的人类矿床学(Anthropogenic Depositology)理论方法体系,以便能够系统性、分阶段、分层次性地调控物质循环,推动资源可持续利用。在现有条件下,具有较大资源化潜力的固体废弃物一般有3类:有机废弃物(畜禽粪便、餐厨垃圾、厨余和园林绿化垃圾、城市污泥等)[36]、非金属废旧材料(建筑垃圾、废塑料、废玻璃等)[37]、废旧金属(电子废弃物等)[38]。相应地形成了一系列基于废物特征的资源化技术,如针对有机废弃物的好氧堆肥[39,40,41,42,43]、厌氧发酵制沼气[44,45,46,47,48,49]、生物液体燃料生产[50,51]、焚烧发电[52]等,利用非金属废旧材料生产建材[53,54]、制备陶粒[55],以及废旧金属的回收[56]、催化热解[57]、生物浸出[58]等。

(3)污染物排放的环境效应。无论如何推动物质闭路循环,仍然会有一部分污染物排放入环境,污染物在环境介质中经历一系列复杂生物地球化学过程,进而表现出不同的区域污染特征,而这又决定了污染物暴露于人类及生物的途径和剂量,并影响到人群健康和生态安全。从污染物排放到其产生生态环境效应的过程可以分为4个阶段(图3):①污染物排放。人类生产和消费活动排放污染物到环境中(通常依据治理主体类别将污染治理活动纳入到生产或消费活动中),这种排放具有高度的时空分异规律;②环境归趋。反映的是污染物排放后进入到目标环境介质中的污染物量[13],通过环境模拟可以量化该污染物排放量造成的环境介质中污染物浓度变化;③环境暴露。反映的是目标环境介质中污染物通过各种途径进入到生物体的剂量[14];④环境效应。反映的是生物体摄入剂量引发的潜在损害[17]。在学科不断细分的背景下,不同学科背景的研究人员分别针对排放因子、归趋因子、暴露因子、效应因子等展开了细致深入的研究,但这种单过程研究往往忽略了不同过程各因子之间的响应关系,从而难以定量评估人类活动造成的环境影响[59,60]。因此,通过学科交叉建立各个过程之间的响应关系,有助于科学认识人类活动造成资源环境影响的全过程,进而提出有效规制和激励人类活动的系统方案。

图3

新窗口打开|下载原图ZIP|生成PPT
图3污染物“排放-损害”过程示意图

Figure 3Process of emission-to-damage of pollutants



3.2 理论基础

物质循环格局与过程、废物循环、污染物排放的环境效应是物质循环科学学科研究的3个重要方向。质量守恒定律、系统论为建立物质循环过程概念模型提供了理论支撑,尺度效应、时空分异规律为研究物质循环格局与效应提供了理论依据,产业共生、人类矿产学等理论为研发废物循环技术提供了科学基础。

(1)质量守恒定律。自然界的一切物质不灭,因此在“开采-生产-使用-存储-报废-排放”的资源开发利用生命周期过程中,任何一个系统的输入与贮存、输出物料质量守恒。运用这一原理,结合人类活动过程概念模型可以将人类活动造成的物质流动过程黑箱打开,精细刻画物质流动路径、通量、强度与形态变化,进而解析其变化规律和驱动机制。

(2)系统论。在人类活动影响下,物质循环系统已经成为资源、环境、经济社会要素耦合的复杂系统。因此,运用系统论的思维,研究者可以突破单一过程、单一视角、特定时空尺度研究可能带来的“盲人摸象”“顾此失彼”“管窥蠡测”等现象,有助于发现人类活动-资源消耗-污染物排放-环境归趋-环境效应之间的互馈机制。

(3)尺度效应。任何规律均在特定时空尺度内成立,不可能无限度外延。因此,必须在一定时空尺度内开展物质循环研究,且不同尺度有不同的研究目的、方法和结论。以磷循环为例,不同时间尺度下驱动磷循环的主要因素截然不同:亿/万/千年尺度下是地壳运动和岩石风化,百/十年尺度下是人类活动,年/月/日乃至更短尺度则主要是生物作用的结果[20]

(4)时空分异规律。在自然力和人类活动作用下,地理要素具有时空分异特征。区域资源禀赋、环境容量、人类活动强度、污染物排放、环境效应、资源短缺、生态损害等均符合时空分异规律[61]。因此,研究物质循环格局、过程与效应的时空分异规律,有助于提出特定时空尺度的资源环境问题解决方案。

(5)产业共生理论。在产业系统资源利用效率相对较高、污染排放强度相对较低的前提条件下,通过产业或企业间的废物交换利用实现系统整体废弃物减量和污染物减排,是最为有效的途径[62,63,64]。产业共生理论描述了物质闭路循环的经济学现象,揭示了企业、产业网络、产业系统3个层次的物质闭路循环规律[65,66]

(6)人类矿床学。人类矿床学主要研究人类社会经济系统中矿产资源的形成和富集规律,包括人类矿产的种类、基本特征、形成机理、储量[67,68]、时空分布[69]、高效开采技术以及评估经济与环境可行性 等[70]

4 研究方法

在物质循环科学研究体系中,不同过程组合研究即构成学科的主要研究方向,每个研究方向具有相应的研究方法(图4)。主要研究方法包括物质流分析、排放清单、废物循环技术、环境质量模拟、环境效应评估等。

图4

新窗口打开|下载原图ZIP|生成PPT
图4物质循环科学的主要研究方法

Figure 4Key research methods of material cycle science



(1)物质流分析。基于元素流分析(Substance Flow Analysis)[1]方法,研究某一特定物质在一定时空内的流动强度及其时空分异,涵盖“开采-生产-使用-存储-报废-排放”的物质循环过程(图4 A-B-C)。着力提高物质循环路径分析精度,主要技术方法包括多源数据观测技术、多源数据融合方法、智能计算模型、可视化仿真等。物质流分析按照图4A中的物质流动路径,建立各过程物质输入、输出、存储等物料清单,并基于过程元素守恒原理对该过程的测算结果进行验证。其基本表达式如公式(1)所示。

j=1NQi,Δt,jin×rj,win=ΔSi,Δt,w+m=1MQi,Δt,mout×Qm,wout
式中: Qi,?t,jin?t时间内输入到过程i的物质j的量; rj,win为输入过程ij物质中元素w的含量;N为所有输入过程i的含有w元素的j物质的种类; ?Si,?t,w?t时间内累积到过程iw元素的总量; Qi,?t,mout?t时间内从过程i输出的m物质的量; θm,wout为从过程i输出的m物质中w元素的含量;M为所有从过程i输出的含有w元素的m物质的种类。

值得一提的是,各过程所有物质输入、输出和累积量变化都应尽可能单独计算,这样在各过程层面才能根据过程元素质量守恒进行结果校验。另外,各过程之间也有逻辑上的定量响应关系,即上一过程的输出等于下一个或几个过程的输入,该规则可以用于校验过程之间的测算结果。另外,从公式(1)来看,物质流分析的时空精度主要体现在两个方面,一方面是物质流动强度,即物质在时间上的流动强度变化和累积量在空间上的分异规律;另一方面是物质种类,毋庸置疑,物质种类及其元素含量的时空分异更能体现区域本底差异和技术变革。

(2)排放清单分析。污染物排放关注物质从社会经济系统进入自然环境的界面过程,是人类活动驱动物质循环从社会经济系统流向自然界的界面过程(图4B-C-F)。排放清单描述特定时空范围内排放某一种或几种污染物的质量分异规律,用于精确表征人类活动的污染物排放特征,是污染源控制和环境质量模拟的前提。排放清单构建的基本模型如公式(2)所示。

a=1AQ?t,ap=a=1Ab=1BADa,?t,b×EFa,b,p
式中: Q?t,ap为研究边界内第a个空间单元上?t时间内污染物p的排放量; A为研究区域内划分的空间单元个数; ADa,?t,b为第a个空间单元上第b类人类活动在?t时间内的平均活动水平(Activity Data); EFa,n,p为第a个空间单元上人类活动b排放污染物p的强度,也即排放因子(Emission Factor); B是第a个空间单元上排放污染物p的人类活动类别数。需要注意的是,研究区域内空间单元格的划分可以是大小均匀的,如划分为大小相同的网格;也可以是不均匀的,如按行政单元省、市、县等。

从公式(2)可以看出,排放清单的时空精度也主要体现在两个方面,一方面是人类活动水平,即人类活动类别及不同类别活动强度的时间和空间分辨率,体现的是人类活动种类及强度的时空差异;另一方面是排放因子,即不同人类活动类型排放特定污染物强度的时空变化,这种差异更多地与产业结构、技术装备、污染防治技术和环境管理水平相关。

(3)废物循环技术。废物资源化是改变物质流动方向、实现物质闭路循环的关键过程。其目标是最大限度将某一废物转化为可再生利用资源并减少污染物排放(图4 B-C)。相比于微观尺度的废物资源化技术,废物循环技术还考虑推动废物循环的技术路径、实现模式、技术成本有效性和技术政策等。目前废物资源化技术已经突破了单一物理、化学、生物过程机理,向多种技术原理的组合方向发展,如城镇污泥资源化不仅涉及固液分离等物理、化学过程,还涉及好氧堆肥等微生物过程。从资源可持续利用的角度来看,随着越来越多的自然资源被开发利用并累积在社会经济系统中形成人类矿床资源,废物资源的再生利用必将成为未来资源开发利用的重点,因此亟需配套的技术、政策、标准等支撑。

(4)环境质量模拟。污染物排放入环境后经过一系列物理、化学、生物过程,实现“量-浓度”的转换过程(图4C-D-F),现实世界中的污染物迁移转化往往跨越多种环境介质,因此需要开展多介质的环境归趋和环境质量模拟研究。传统的环境模拟往往是基于大气环境质量模拟、水环境质量模拟等单一环境介质的污染物浓度模拟,但这种模拟模型往往非常复杂且对数据需求量大。近几年,机器学习模型迅速发展,其具有数据需求量小、运算时间短等优势,为寻找污染物在多种环境介质的“量-浓度”统计关系开辟了新路径。其基本原理如公式(3)所示。

C?t,p,s=fQ?t,p×FF?t,p,s,K*
式中: ?C?t,i,j表示?t时间内污染物p在环境介质s中的浓度变化; Q?t,p表示?t时间内污染物p的排放量; FF?t,p,s表示?t时间内排放的污染物量 Q?t,p进入环境介质s的比例,即归趋因子; K*表示其他潜在的相关变量;f (·)表示环境介质s中污染物p的增量与环境浓度间的响应关系函数。

显然,想要提高环境质量模拟的时空精度,需要高时空分辨率的污染物排放清单和归趋因子。排放清单的时空差异与人类活动息息相关,而归趋因子则更多地受自然条件尤其是污染物迁移转化过程因素的影响。不同时空尺度下测量的归趋因子有很大的不同,如果使用的归趋因子与排放清单时空分辨率不匹配,例如在国家尺度研究中使用了特定地区测量的归趋因子,会大大增加结果的不确定性,反之亦然。需要注意的是,公式(3)建立的是环境中污染物浓度变化与Δt时间段内污染物排放量的关系,没有考虑之前时间排放污染物的累积效应。如果要考虑环境介质的实际浓度,则应该在公式(3)计算出来的浓度变化基础上,增加环境介质中的背景浓度值。

(5)人类活动的环境效应评估。为了揭示人类活动与污染物危害的相互作用机制,需要建立从污染物排放到潜在环境效应的系统定量评估方法(图4 C-D-E-F)。除了排放清单和环境质量模型外,还需要发展污染物环境暴露剂量检测监测方法、剂量-效应模型和环境效应评估工具。环境效应评估遵循公式(4)。

IS=i=1Nj=1MCs,p×XFs,p×EFs,p
式中:IS表示环境效应评估分数; Cs,p表示污染物p在环境介质s中的浓度; XFs,p是暴露因子,表示在一定时间段内受体从环境介质s中摄入污染物p的比例; EFs,p是污染物p在环境介质s中的效应因子,根据效应的不同也可以称为损害因子。在生命周期环境影响评价中,效应因子对应中点评估,损害因子对应终点评估。需要说明的是,在很多生命周期评价方法中,上述公式中的 Cs,p被污染物环境增量所替代,这种方式缺少对“量-浓度”转换关系的考虑,忽略了环境介质中污染物背景浓度可能造成的影响,从而大大降低了这一环节原本应有的时空异质性。另外,从公式(4)可以看出,除污染物浓度分布外,暴露因子、效应/损害因子也是提高环境效应评估时空分辨率和评估精度的关键。

5 研究展望

需要特别指出的是,以上各研究方向都只考虑了部分过程,忽视了与其他过程的衔接,导致难以建立具有内在响应关系的完整物质循环路径。因此,物质循环科学领域方法创新的主要途径,就是打通以上研究方向之间的数据接口——构建物理模型、建立数据融合方法、实现物质循环过程之间数据的无缝衔接。

(1)物质流分析结果与排放清单分析所需数据的融合。物质流分析方法可以定量测算从社会经济系统流入到自然环境的物质量,但想要将物质流分析结果应用于排放清单构建还存在很多障碍。一方面,物质流分析中对人类活动类型的划分可能与排放清单构建中的人为源划分不一致,这个问题可以通过对人类活动的一致性界定和调整来解决;另一方面,物质流分析往往按元素种类来分析排放入环境的物质总量,而排放清单则按照污染物类别来分析,这种数据类型的不一致需要在研究方案设计之初进行一致性考虑;除此之外,二者测算的时间和空间尺度可能不一致,这需要将二者的测算建立在同一时间和空间尺度上进行。未来,应当建立多源环境数据融合方法,研发数据时空尺度转换模型,确保研究结果的尺度一致性,并提高时空精度和准确度。

(2)物质流分析结果与废物循环潜力测算所需数据的融合。通过物质流分析方法可以计算人类活动产生的废物量,从而估算其资源化潜力。然而,从废弃物产生到形成再生资源的过程包含诸多不确定因素,除了测算结果的时空尺度外,还需要理清废弃物种类、产生量、收集量、进入资源化系统的量、形成再生资源的量、不同技术路径对再生资源产率的影响等。以畜禽粪便为例,将计算出的动物排便理论值作为粪便资源化潜力显然与真实情况存在较大差距。另外,还应当弄清清粪方式以明确粪便收集量,弄清粪便贮存方式以明确实际处理量,弄清资源化技术的工艺流程和参数等以明确资源化率,弄清每一种资源化产品利用状况(如沼气发电使用量等)以明确真实使用量。建立废弃物从产生到利用全过程的物理模型,有利于识别提高废物循环利用率的关键环节,查明可以利用但尚未有效利用的废物量,针对性地研发废物循环技术,并提出推动废物循环利用的管理措施和政策建议。

(3)排放清单结果与环境效应评估所需数据的融合。如前文所述,从污染物排放到环境效应产生的全过程受到排放因子、归趋因子、“量-浓度”转化模型、暴露因子、效应因子等众多参数的影响。这些参数往往基于微观过程测量获得,只能反映局部地区或特定时间的特征,但这些参数往往同时又具有较大的时空异质性。因此,任意一个或几个参数的时空尺度与其他参数不匹配,就可能导致结果出现较大的偏差。因此,除发展高时空分辨率的排放清单外,还应关注后续过程中各参数的时空分辨率及其一致性,尤其是建立运用各参数时空分异主控因子进行尺度一致性转换的技术方法。

综上所述,多尺度数据观测技术、多源异构数据融合方法、时空大数据分析方法等是打通各个过程数据接口的关键。需要注意的是,这些方法创新应该建立在对所研究过程的深入调查和理解上,而不能就数据谈数据。

6 结论

毋庸置疑,工业革命以来的高资源开采-高污染排放的“双高”发展模式造成了物质资源的线性利用模式,进而导致了频发的环境污染和资源枯竭危机。面临越来越紧的资源与环境约束,发展循环经济、转变资源利用模式、推动物质闭路循环几乎成了唯一选择。物质循环科学的学科任务就是以物质的资源和环境属性为切入点,通过深入认识和理解人类活动影响下的物质循环路径、格局及效应,识别系统“热点”,并针对性地调控和改造物质循环路径。问题导向的学科特征,决定了物质循环科学必须融合资源学、地理学、环境学、工程学等多学科理论方法,从物质循环路径解析入手,立足于全生命周期过程分析的时空尺度一致性,创新多尺度数据观测技术、多源异构数据融合方法、数据时空尺度转换方法以及废物循环技术,打通自然资源开采利用整个生命周期过程中各个过程数据接口,实现物质循环过程的定量模拟和优化。我们相信,随着研究的不断深入,物质循环科学的理论与方法体系将不断完善,也将为资源环境可持续发展实践注入新的动力。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Roth L, Eklund M. Environmental evaluation of reuse of by-products as road construction materials in Sweden
[J]. Waste Management, 2003,23(2):107-116.

DOI:10.1016/S0956-053X(02)00052-1URLPMID:12623085 [本文引用: 2]
Reuse of by-products in road construction is most often environmentally evaluated from the narrow perspective of the material itself, i.e. the material level. In this article, we argue that the current mainstream environmental evaluation of reuse of by-products in road construction should use wider system boundaries. In order to illustrate the importance of system boundaries to the final result, three additional levels that complement the material level, are applied to the environmental evaluation of reuse of by-products. In total these four levels of evaluation are, firstly, the material itself, mainly studied by leaching tests, secondly, the road environment studied by substance flow analysis, furthermore, a narrow life-cycle perspective and, finally, the industrial system level that addresses the reuse of by-products in a broader sense. Methods and tools applied to different levels emphasise different environmental aspects and consequently they are appropriate for addressing different questions. However, especially for the evaluation of environmental aspects on the industrial system level, there is a need to develop the methods. To apply these four levels to the evaluation would broaden the knowledge about the environmental impacts of the reuse of by-products. We argue that current leaching tests have to be complemented by the broader system boundaries used in substance flow studies and in life-cycle assessments in order to discuss the use of resources and environmental impacts from a wider perspective.

Filippelli G M. The global phosphorus cycle: Past, present, and future
[J]. Elements, 2008,4(2):89-95.

[本文引用: 1]

Rauch J N, Pacyna J M. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles
[J]. Global Biogeochemical Cycles, 2009, DOI: 10.1029/2008GB003376.

[本文引用: 1]

Blackwelder E. The geologic role of phosphorus
[J]. Proceedings of the National Academy of Sciences of the United States of America, 1916,2(8):490-495.

DOI:10.1073/pnas.2.8.490URLPMID:16586638 [本文引用: 1]

Yuan Z W, Bi J, Moriguichi Y. The circular economy: A new development strategy in China
[J]. Journal of Industrial Ecology, 2006,10(1):4-8.

[本文引用: 1]

Yuan Z W, Wu H J, He X F, et al. A bottom-up model for quantifying anthropogenic phosphorus cycles in watersheds
[J]. Journal of Cleaner Production, 2014,84:502-508.

[本文引用: 1]

Graedel T E. The contemporary European Copper Cycle: Introduction
[J]. Ecological Economics, 2002,42(1):5-7.

[本文引用: 2]

Lifset R, Gordon R B, Graedel T E, et al. Where has all the copper gone: The stocks and flows project, part 1
[J]. Journal of the Minerals, Metals and Materials Society, 2002,54(10):21-26.

[本文引用: 1]

Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China
[J]. Nature, 2015,524(7565):335-338.

URLPMID:26289204 [本文引用: 1]

Miyazaki K, Eskes H, Sudo K, et al. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation
[J]. Atmosphere Chemistry and Physics, 2016, DOI: 10.5194/acp-2016-529.

[本文引用: 1]

Reff A, Bhave P, Simon H, et al. Emissions inventory of PM2. 5 trace elements across the United States
[J]. Environmental Science & Technology, 2009,43(15):5790-5796.

[本文引用: 1]

Li W, Wang C, Wang H Q J, et al. Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China
[J]. Environmental Pollution, 2014,192:83-90.

URLPMID:24905256 [本文引用: 1]

Mackay D, Paterson S. Evaluating the multimedia fate of organic-chemicals: A level-III fugacity model
[J]. Environmental Science & Technology, 1991,25(3):427-436.

[本文引用: 2]

王传飞, 王小萍, 龚平, . 植被富集持久性有机污染物研究进展
[J]. 地理科学进展, 2013,32(10):1555-1566.

[本文引用: 2]

[ Wang C F, Wang X P, Gong P, et al. Research progress in uptake of persistent organic pollutants by plants
[J]. Progress in Geography, 2013,32(10):1555-1566.]

[本文引用: 2]

Tao Y Q, Xue B, Lei G L, et al. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China
[J]. Environmental Pollution, 2017,223:624-634.

URLPMID:28173953 [本文引用: 1]

Zhang Y, Tao S, Shen H, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(50):21063-21067.

URLPMID:19995969 [本文引用: 1]

Shen H Z, Tao S, Liu J F, et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility
[J]. Scientific Reports, 2014, (4):6561.

[本文引用: 2]

Elser J, Bennett E. A broken biogeochemical cycle
[J]. Nature, 2011,478(7367):29-31.

[本文引用: 1]

James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: The role of sediments
[J]. Geochimica Et Cosmochimica Acta, 2000,64(18):3111-3122.

[本文引用: 1]

Liu X, Sheng H, Jiang S Y, et al. Intensification of phosphorous cycling in China since the 1600s
[J]. Proceedings of the National Academy Sciences, 2016,113(10):2609-2614.

[本文引用: 2]

Schindler D W. Evolution of phosphorus limitation in lakes
[J]. Science, 1977,195(4275):260-262.

[本文引用: 1]

Schindler D W. Eutrophication and recovery in experimental lakes: Implications for lake management
[J]. Science, 1974,184(4139):897-899.

URLPMID:17782381 [本文引用: 1]

Bennett E M, Reed-Andersen T, Houser J N, et al. A phosphorus budget for the Lake Mendota Watershed
[J]. Ecosystems, 1999,2(1):69-75.

[本文引用: 1]

Cordell D, White S B. Life’s bottleneck: Sustaining the world’s phosphorus for a food secure future
[J]. Annual Review of Environment and Resources, 2014,39(1):161-188.

[本文引用: 1]

Yuan Z W, Jiang S Y, Sheng H, et al. Human perturbation of the global phosphorus cycle: Changes and consequences
[J]. Environmental Science and Technology, 2018, DOI: 10.1021/acs.est.7b03910.

URLPMID:33890767 [本文引用: 1]

Jiang S Y, Yuan Z W. Phosphorus flow patterns in the Chaohu watershed from 1978 to 2012
[J]. Environmental Science & Technology, 2015,49(24):13973-13982.

URLPMID:26556468 [本文引用: 1]

Wu H J, Yuan Z W, Gao L M, et al. Life-cycle phosphorus management of the crop production-consumption system in China, 1980-2012
[J]. Science of The Total Environment, 2015,502:706-721.

[本文引用: 1]

Antikainen R, Reija H, Lemola R, et al. Nitrogen and phosphorus flows in the Finnish agricultural and forest sectors, 1910-2000
[J]. Water Air and Soil Pollution, 2008,194(1):163-177.

[本文引用: 1]

Smil V. Phosphorous in the environment: Natural flows and human interferences
[J]. Annual Review of Energy and the Environment, 2000,25:53-88.

[本文引用: 1]

Smith R A, Alexander R B, Schwarz G E. Natural background concentrations of nutrients in streams and rivers of the conterminous United States
[J]. Environmental Science & Technology, 2003,37(14):3039-3047.

URLPMID:12901648 [本文引用: 1]

Antikainen R, Lemola R, Nousiainen J I, et al. Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system
[J]. Agriculture, Ecosystems and Environment, 2005,107(2):287-305.

[本文引用: 1]

Fan Y P, Hu S Y, Chen D J, et al. The evolution of phosphorus metabolism model in China
[J]. Journal of Cleaner Production, 2008,17(9):811-820.

[本文引用: 1]

袁增伟, 毕军. 产业生态学[M]. 北京: 科学出版社, 2010.
[本文引用: 1]

[ Yuan Z W, Bi J. Industry Ecology[M]. Beijing: Science Press, 2010.]
[本文引用: 1]

Oelkers E H, Valsami-Jones E. Phosphate mineral reactivity and global sustainability
[J]. Elements, 2008,4(2):83-87.

[本文引用: 1]

Lewis W M, Wurtsbaugh W A, Paerl H W. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters
[J]. Environmental Science & Technology, 2011,45(24):10300-10305.

URLPMID:22070635 [本文引用: 1]

Liu X W, Yuan Z W, Liu X, et al. Historic trends and future prospects of waste generation and recycling in China’s phosphorus cycle
[J]. Environmental Science & Technology, 2020,54(8):5131-5139.

URLPMID:32186177 [本文引用: 1]

Liu X W, Yuan Z W, Xu Y, et al. Greening cement in China: A cost-effective roadmap
[J]. Applied Energy, 2017,189:233-244.

[本文引用: 1]

Zhang L, Qu J M, Sheng H, et al. Urban mining potentials of university: In-use and hibernating stocks of personal electronics and students’ disposal behaviors
[J]. Resources Conservation and Recycling, 2019,143:210-217.

[本文引用: 1]

Siles-Castellano A B, Lopez M J, Jurado M M, et al. Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality
[J]. Bioresource Technology, 2020, DOI: 10.1016/j.biortech.2020.123946.

DOI:10.1016/j.biortech.2021.125165URLPMID:33894451 [本文引用: 1]
This study investigated the effects of garbage enzyme (GE), pelelith (PL), and biochar (BC) on nitrogen (N) conservation, nitrogenase (Nase) and N-fixing bacteria during the composting of sewage sludge. Results showed that the addition of GE, PL, and BC reduced NH3 emissions by 40.9%, 29.3%, and 67.4%, and increased the NO3-N contents of the end compost by 161.4, 88.2, and 105.8% relative to control, respectively, thus increasing the TN content. Three additives improved Nase, cellulase, and fluorescein diacetate hydrolase (FDA) activities and the abundances of nifH gene, and the largest increase was BC, followed by PL and GE. In addition, the additives also markedly influenced the succession of N-fixing bacteria, and significantly increased the abundance of Proteobacteria during the whole process. The BC and PL additions strengthened the sensitivity of N-fixing bacteria to environmental variables, and FDA, TN, moisture content, and NO3-N significantly affected the N-fixing bacteria at genus level.

Awasthi S K, Sarsaiya S, Awasthi M K, et al. Changes in global trends in food waste composting: Research challenges and opportunities
[J]. Bioresource Technology, 2020, DOI: 10.1016/j.biortech.2019.122555.

URLPMID:33894451 [本文引用: 1]

Scott A, Tien Y C, Drury C F, et al. Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp
[J]. Canadian Journal of Microbiology, 2018,64(3):201-208.

URLPMID:29342372 [本文引用: 1]

Liu Y T, Wang W X, Xu J Q, et al. Evaluation of compost, vegetable and food waste as amendments to improve the composting of NaOH/NaClO-contaminated poultry manure
[J]. PLoS ONE, 2018, DOI: 10.1371/journal.pone.0205112.

DOI:10.1371/journal.pone.0250663URLPMID:33905439 [本文引用: 1]
In a disease-state-dependent manner, the histamine-resistant itch in dry skin-based skin diseases such as atopic dermatitis (AD) and xerosis is mainly due to hyperinnervation in the epidermis. Semaphorin 3A (Sema3A) is a nerve repulsion factor expressed in keratinocytes and it suppresses nerve fiber elongation in the epidermis. Our previous studies have shown that Sema3A ointment inhibits epidermal hyperinnervation and scratching behavior and improves dermatitis scores in AD model mice. Therefore, we consider Sema3A as a key therapeutic target for improving histamine-resistant itch in AD and xerosis. This study was designed to screen a library of herbal plant extracts to discover compounds with potential to induce Sema3A in normal human epidermal keratinocytes (NHEKs) using a reporter gene assay, so that positive samples were found. Among the positive samples, only the extract of S. baicalensis was found to consistently increase Sema3A levels in cultured NHEKs in assays using quantitative real-time PCR and ELISA. In evaluation of reconstituted human epidermis models, the level of Sema3A protein in culture supernatants significantly increased by application of the extract of S. baicalensis. In addition, we investigated which components in the extract of S. baicalensis contributed to Sema3A induction and found that baicalin and baicalein markedly increased the relative luciferase activity, and that baicalein had higher induction activity than baicalin. Thus, these findings suggest that S. baicalensis extract and its compounds, baicalin and baicalein, may be promising candidates for improving histamine-resistant itch via the induction of Sema3A expression in epidermal keratinocytes.

Lin L, Xu F Q, Ge X M, et al. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting
[J]. Renewable & Sustainable Energy Reviews, 2018,89:151-167.

[本文引用: 1]

O’Brien B J, Milligan E, Carver J, et al. Integrating anaerobic co-digestion of dairy manure and food waste with cultivation of edible mushrooms for nutrient recovery
[J]. Bioresource Technology, 2019, DOI: 10.1016/j.biortech.2019.121312.

URLPMID:33894451 [本文引用: 1]

Chuenchart W, Logan M, Leelayouthayotin C, et al. Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure
[J]. Biomass and Bioenergy, 2020, DOI: 10.1016/j.biombioe.2020.105541.

URLPMID:22211004 [本文引用: 1]

Xing B S, Han Y L, Wang X C, et al. Acclimatization of anaerobic sludge with cow manure and realization of high-rate food waste digestion for biogas production
[J]. Bioresource Technology, 2020, DOI: 10.1016/j.biortech.2020.123830.

DOI:10.1016/j.biortech.2021.125165URLPMID:33894451 [本文引用: 1]
This study investigated the effects of garbage enzyme (GE), pelelith (PL), and biochar (BC) on nitrogen (N) conservation, nitrogenase (Nase) and N-fixing bacteria during the composting of sewage sludge. Results showed that the addition of GE, PL, and BC reduced NH3 emissions by 40.9%, 29.3%, and 67.4%, and increased the NO3-N contents of the end compost by 161.4, 88.2, and 105.8% relative to control, respectively, thus increasing the TN content. Three additives improved Nase, cellulase, and fluorescein diacetate hydrolase (FDA) activities and the abundances of nifH gene, and the largest increase was BC, followed by PL and GE. In addition, the additives also markedly influenced the succession of N-fixing bacteria, and significantly increased the abundance of Proteobacteria during the whole process. The BC and PL additions strengthened the sensitivity of N-fixing bacteria to environmental variables, and FDA, TN, moisture content, and NO3-N significantly affected the N-fixing bacteria at genus level.

Bi S J, Hong X J, Yang H Z, et al. Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste
[J]. Renewable Energy, 2020,150:213-220.

[本文引用: 1]

Xing B S, Cao S F, Han Y L, et al. Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions
[J]. Bioresource Technology, 2020,307:123195.

URLPMID:32217437 [本文引用: 1]

Zhang J X, Loh K C, Lee J, et al. Three-stage anaerobic co-digestion of food waste and horse manure
[J]. Scientific Reports, 2017,7(1): DOI: 10.1038/s41598-017-01408-w.

DOI:10.1038/s41598-017-18485-6URLPMID:29273789 [本文引用: 1]
Reduced clearance of lipoproteins by HDL scavenger receptor class B1 (SR-B1) plays an important role in occlusive coronary artery disease. However, it is not clear how much microvascular dysfunction contributes to ischemic cardiomyopathy. Our aim was to determine the distribution of vascular dysfunction in vivo in the coronary circulation of male mice after brief exposure to Paigen high fat diet, and whether this vasomotor dysfunction involved nitric oxide (NO) and or endothelium derived hyperpolarization factors (EDHF). We utilised mice with hypomorphic ApoE lipoprotein that lacked SR-B1 (SR-B1(-/-)/ApoER61(h/h), n = 8) or were heterozygous for SR-B1 (SR-B1(+/-)/ApoER61(h/h), n = 8) to investigate coronary dilator function with synchrotron microangiography. Partially occlusive stenoses were observed in vivo in SR-B1 deficient mice only. Increases in artery-arteriole calibre to acetylcholine and sodium nitroprusside stimulation were absent in SR-B1 deficient mice. Residual dilation to acetylcholine following L-NAME (50 mg/kg) and sodium meclofenamate (3 mg/kg) blockade was present in both mouse groups, except at occlusions, indicating that EDHF was not impaired. We show that SR-B1 deficiency caused impairment of NO-mediated dilation of conductance and microvessels. Our findings also suggest EDHF and prostanoids are important for global perfusion, but ultimately the loss of NO-mediated vasodilation contributes to atherothrombotic progression in ischemic cardiomyopathy.

Saeed M A, Ma H Z, Yue S Y, et al. Concise review on ethanol production from food waste: Development and sustainability
[J]. Environmental Science and Pollution Research, 2018, DOI: 10.1007/s11356-018-2972-4.

URLPMID:33900558 [本文引用: 1]

Nathia-Neves G, Neves T D, Berni M, et al. Start-up phase of a two-stage anaerobic co-digestion process: Hydrogen and methane production from food waste and vinasse from ethanol industry
[J]. Biofuel Research Journal, 2018,5(2):813-820.

[本文引用: 1]

Lin C S K, Pfaltzgraff L A, Herrero-Davila L, et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective
[J]. Energy& Environmental Science, 2013,6(2):426-464.

[本文引用: 1]

林文锋. 我国固废资源化的技术及创新发展
[J]. 中国资源综合利用, 2019,37(8):78-80.

[本文引用: 1]

[ Lin W F. Technological and innovative development of solid waste resource utilization in China
[J]. China Resources Comprehensive Utilization, 2019,37(8):78-80.]

[本文引用: 1]

田伟. 燃煤厂固体废弃物资源化利用创新探索
[J]. 科学技术创新, 2020,(4):195-196.

[本文引用: 1]

[ Tian W. New ways to recycle solid waste from coal-fired plants
[J]. Scientific and Technological Innovation, 2020,(4):195-196.]

[本文引用: 1]

童思意, 刘长淼, 刘玉林, . 我国固体废弃物制备陶粒的研究进展
[J]. 矿产保护与利用, 2019,39(3):140-150.

[本文引用: 1]

[ Tong S Y, Liu C M, Liu Y L, et al. Research status of ceramsite prepared from solid waste in China
[J]. Conservation and Utilization of Mineral Resources, 2019,39(3):140-150.]

[本文引用: 1]

许艺. 废旧电子垃圾的资源化回收及应用分析
[J]. 节能与环保, 2019, (5):109-110.

[本文引用: 1]

[ Xu Y. Recovery and application analysis of waste electronic waste
[J]. Energy Conservation & Environmental Protection, 2019, (5):109-110.]

[本文引用: 1]

赵凤, 李小芳, 李爱民. 电子垃圾催化热解特性研究
[J]. 中国资源综合利用, 2018,36(5):20-25.

[本文引用: 1]

[ Zhao F, Li X F, Li A M. Study on the catalytic pyrolysis characteristics of electronic waste
[J]. China Resources Comprehensive Utilization, 2018,36(5):20-25.]

[本文引用: 1]

谭晓桐, 王芷晴, 任秀君, . 生物浸出电子垃圾中关键金属的研究进展
[J]. 金属矿山, 2020,(11):71-78.

[本文引用: 1]

[ Tan X T, Wang Z Q, Ren X J, et al. Advances in bioleaching critical metals from electronic waste
[J]. Metal Mine, 2020,(11):71-78.]

[本文引用: 1]

Saouter E, Aschberger K, Fantke P, et al. Improving substance information in USEtox?, part 2: Data for estimating fate and ecosystem exposure factors
[J]. Environmental Toxicology and Chemistry, 2017,36(12):3463-3470.

[本文引用: 1]

Saouter E, Aschberger K, Fantke P, et al. Improving substance information in USEtox?, part 1: Discussion on data and approaches for estimating freshwater ecotoxicity effect factors
[J]. Environmental Toxicology and Chemistry, 2017,36(12):3450-3462.

DOI:10.1002/etc.3889URLPMID:28618056 [本文引用: 1]
The scientific consensus model USEtox((R)) is recommended by the European Commission as the reference model to characterize life cycle chemical emissions in terms of their potential human toxicity and freshwater aquatic ecotoxicity impacts in the context of the International Reference Life Cycle Data System Handbook and the Environmental Footprint pilot phase looking at products (PEF) and organizations (OEF). Consequently, this model has been systematically used within the PEF/OEF pilot phase by 25 European Union industry sectors, which manufacture a wide variety of consumer products. This testing phase has raised some questions regarding the derivation of and the data used for the chemical-specific freshwater ecotoxicity effect factor in USEtox. For calculating the potential freshwater aquatic ecotoxicity impacts, USEtox bases the effect factor on the chronic hazard concentration (HC50) value for a chemical calculated as the arithmetic mean of all logarithmized geometric means of species-specific chronic median lethal (or effect) concentrations (L[E]C50). We investigated the dependency of the USEtox effect factor on the selection of ecotoxicological data source and toxicological endpoints, and we found that both influence the ecotoxicity ranking of chemicals and may hence influence the conclusions of a PEF/OEF study. We furthermore compared the average measure (HC50) with other types of ecotoxicity effect indicators, such as the lowest species EC50 or no-observable-effect concentration, frequently used in regulatory risk assessment, and demonstrated how they may also influence the ecotoxicity ranking of chemicals. We acknowledge that these indicators represent different aspects of a chemical's ecotoxicity potential and discuss their pros and cons for a comparative chemical assessment as performed in life cycle assessment and in particular within the PEF/OEF context. Environ Toxicol Chem 2017;36:3450-3462. (c) 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

Henderson A D, Hauschild M Z Meent D V D, et al. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties
[J]. The International Journal of Life Cycle Assessment, 2011,16(8):701-709.

[本文引用: 1]

Yuan Z W, Shi L. Improving enterprise competitive advantage with industrial symbiosis: Case study of a smeltery in China
[J]. Journal of Cleaner Production, 2009,17(14):1295-1302.

[本文引用: 1]

Yuan Z W, Zhang L, Bi J. Which is more cost-effective? A comparison of two wastewater treatment models in China-Singapore Suzhou Industrial Park, China
[J]. Journal of Cleaner Production, 2010,18(13):1270-1275.

[本文引用: 1]

Zhang L, Yuan Z W, Bi J, Zhang B, et al. Eco-industrial parks: National pilot practices in China
[J]. Journal of Cleaner Production, 2010,18(5):504-509.

[本文引用: 1]

袁增伟, 毕军. 生态产业共生网络形成机理及其系统解析框架
[J]. 生态学报, 2007,27(8):3182-3188.

[本文引用: 1]

[ Yuan Z W, Bi J. Evolution mechanism of eco-industrial symbiosis network and its analytical framework
[J]. Acta Ecologica Sinica, 2007,27(8):3182-3188.]

[本文引用: 1]

袁增伟, 毕军. 生态产业共生网络运营成本及其优化模型开发研究
[J]. 系统工程理论与实践, 2006,26(7):92-97.

[本文引用: 1]

[ Yuan Z W, Bi J. Operational cost and optimization model of running eco-industrial symbiotic network
[J]. Systems Engineering-Theory & Practice, 2006,26(7):92-97.]

[本文引用: 1]

石晓晓, 郑国砥, 高定, . 中国畜禽粪便养分资源总量及替代化肥潜力
[J]. 资源科学, 2021,43(2):403-411.

[本文引用: 1]

[ Shi X X, Zheng G D, Gao D, et al. Quantity of available nutrient in livestock manure and its potential of replacing chemical
[J]. Resources Science, 2021,43(2):403-411.]

[本文引用: 1]

栾晓玉, 刘巍, 崔兆杰, . 基于物质流分析的中国塑料资源代谢研究
[J]. 资源科学, 2020,42(2):372-382.

[本文引用: 1]

[ Luan X Y, Liu W, Cui Z J, et al. Plastic resources metabolism in China based on material flow analysis
[J]. Resources Science, 2020,42(2):372-382.]

[本文引用: 1]

韩中奎, 文博杰, 代涛, . 中国房屋建筑中钢铁存量的时空变化
[J]. 资源科学, 2018,40(12):2351-2359.

[本文引用: 1]

[ Han Z K, Wen B J, Dai T, et al. Temporal and spatial changes of iron stocks in China’s housing construction
[J]. Resources Science, 2018,40(12):2351-2359.]

[本文引用: 1]

曾现来, 李金惠. 城市矿山开发及其资源调控: 特征、可持续性和开发机理
[J]. 中国科学: 地球科学, 2018,48(3):288-298.

[本文引用: 1]

[ Zeng X L, Li J H. Urban mining and its resources control: Characteristics, sustainability, and extraction mechanism
[J]. Scientia Sinica (Terrae), 2018,48(3):288-298.]

[本文引用: 1]

相关话题/物质 环境 资源 过程 人类