Factors affecting China’s provincial carbon productivity based on mixed geographically weighted regression modeling
TANGZhipeng通讯作者:
收稿日期:2017-09-7
修回日期:2017-11-20
网络出版日期:2017-12-31
版权声明:2017《资源科学》编辑部《资源科学》编辑部
基金资助:
作者简介:
-->
展开
摘要
关键词:
Abstract
Keywords:
-->0
PDF (4132KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
1 引言
碳生产率(Carbon Productivity)最早由Kaya等和Oikonomou等提出,它指一段时期内单位CO2排放所产生的经济效益[1,2]。提高碳生产率意味着提高单位碳排放的经济产出,它既是中国推动低碳经济发展的核心内容,也是促使经济转型升级的内在动力。目前,发展低碳经济已经成为全球共识。潘家华认为从长远战略上来看,低碳经济是世界经济发展的大势所趋,今后的竞争不是传统劳动力的竞争,也不是石油效率的竞争,而是碳生产率的竞争[3]。何建坤等推导出碳生产率的年提高率可以近似表示为国内生产总值年增长率和碳年减排率之和[4]。国内外****对于碳生产率的研究一方面主要集中在碳生产率的演变和区域差异性以及影响因素分析,如Sang等分析了白令海和楚科奇海区域碳生产率的影响因素[5];杨翔等对1998—2011年中国26个制造行业的碳生产率进行测算和收敛性分析[6];潘家华等利用聚类分析、泰尔指数、脱钩指数等方法分析了区域碳生产率的差异性及影响因素[7]。另一方面主要集中在碳生产率与减排目标的关系,如Beinhocker等提出实现全球碳减排目标,到2050年全球碳生产率需要增长10倍左右[8];Peters等认为中国作为全球最大的碳排放发展中国家,提高碳生产率尤为重要[9];吴晓华等基于DEA模型得出中国碳生产率在未来40年增长10倍的目标在短期内只能通过提升能效来实现[10];王萱认为中国要从“相对减排”通往“绝对减排”,关键要大幅提升碳生产率,重点提高能源效率、改善能源结构、优化产业结构和空间结构[11];谌伟等对工业碳排放总量与碳生产率之间的关系进行了研究,认为提高碳生产率尽管无法降低碳排放总量,却是具有可行性的相对意义的减排[12]。
由于碳排放主要来自人类经济活动中化石能源的燃烧,因此节能减排是减少经济活动中碳排放,促进碳生产率提高的根本保证。节能减排概念的正式提出源自“十一五”规划纲要。2006年国务院在《中华人民共和国国民经济和社会发展第十一个五年规划纲要》[13]中公布了“十一五”期间单位国内生产总值能耗降低20%左右,主要污染物排放总量减少10%的约束性指标。2011年国务院下发了《“十二五”节能减排综合性工作方案的通知》[14],确定“十二五”节能减排总体要求和各省区市节能减排的主要目标,强化节能减排目标责任。2016年随着联合国气候变化《巴黎协定》的正式签署,中国承诺在2030年左右达到碳峰值并且实现2030年单位GDP碳排放比2005年降低60%~65%。目前中国还处于快速城镇化的发展进程中,对化石能源依赖的惯性以及区域差异的客观存在,决定了实现2030年目标将分阶段并有差别的落实到国内各个地区。本文的主旨是通过对比分析中国省域“十一五”末和“十二五”末碳生产率影响因素,解析对中国省域碳生产率的影响程度,为各省域完成全国“十三五”节能减排目标进而实现中国2030年碳达峰提供决策建议。
碳生产率的研究方法主要包括二类:一类包括数据包络分析[10]、聚类分析[7]、因素分解[15]和面板数据模型[16],这些方法均采用空间独立性的假设,认为区域间经济要素空间相互独立,但是从现代化生产来看,经济要素在临近空间流动形成集聚有利于知识传播、资源共享形成规模经济进而提高生产效率,而地理邻近性往往充当着集聚的先导条件,即所谓经济要素的空间相关性。另一类包括空间滞后模型、空间误差模型和空间杜宾模型等[17,18],这些模型对于自变量都采用了空间一致性的假设,认为影响因素在样本区间都呈空间相关或者空间无关,但从模型构建的角度来看,对于自变量的空间相关性需要通过空间统计检验,并且即使同一自变量在不同年度也可能会显示出不同的空间相关属性。混合地理加权回归模型在解释变量中由于同时包含了无显著空间相关性的全局变量和有显著空间相关性的局域变量,能够同时反映解释变量空间相关性的差异,并在中国省域人均GDP和城镇居民文化消费的影响因素研究中得到了应用[19,20]。本文基于上述研究成果,采用混合地理加权回归方法来考察分析省域碳生产率的影响因素。
2 研究方法与数据来源
2.1 研究方法
2.1.1 空间自相关方法当变量在空间上表现出一定的规律性并非随机分布时,表明变量具有空间相关性。一般采用全局Moran's I指数[21,22]进行空间相关性关系检验,具体公式为:
其中:
式中
2.1.2 混合地理加权回归方法
在普通线性回归模型为:
式中
实际上分散在空间的样本点往往具有一定空间相关性,而地理加权回归模型是对普通线性回归的扩展,它是进一步将样本点数据的地理位置二维坐标
分析公式(3)和公式(4)可以看出每个自变量的所有观测点对应的回归系数要么相同要么相异。从理论上讲,回归模型中更可能是部分自变量具有空间随机性和部分自变量具有空间相关性同时存在。Brunsdon等[24]提出了混合地理加权回归模型,在混合地理加权回归模型中,部分参数被设为常数,所对应变量为全局变量,另外一些则随着空间位置变化而变化,所对应变量为局域变量,具体公式为:
混合地理加权回归模型实际上是由一个普通线性回归模型和一个地理加权回归模型结合而成,回归参数中既有常参数,也有变参数,参数估计可采用两步迭代估计。本文主要通过全局Moran's I指数来决定自变量是否为局域变量或全局变量。
2.2 指标选取和数据来源
参考Kaya等的研究成果[1],本文碳生产率采用单位GDP碳排放的倒数,即每吨碳产生的经济效益。影响碳生产率的因素很多,包括能源结构、产业结构、技术进步、劳动生产率、城镇化规模、经济开放度、资源禀赋、环境规制等。考虑到数据的可获取性,另外从指标的简洁性和相互独立性角度出发,本文的影响因素选取了能源结构、产业结构、技术进步和劳动生产率四个指标(表1)。Table 1
表1
表1中国省域碳生产率及影响因素的指标
Table 1The indexes of provincial carbon productivity and its influencing factors in China
变量名称 | 计算指标 | 经济含义 | |
---|---|---|---|
被解释变量 | 碳生产率/(万元/t碳) | GDP/碳排放 | 每吨碳产生的经济效益,衡量碳排放利用效率 |
解释变量 | 能源结构/% | 火电/发电量 | 火电占发电量的比重,衡量能源结构的变化 |
产业结构/% | 服务业增加值/GDP | 服务业所占GDP比重,衡量产业结构的变化 | |
技术进步/(件/年) | 年专利授权数量 | 衡量年度技术创新活动的程度 | |
劳动生产率/(万元/人) | 工业增加值除以从业人员数 | 衡量碳排放主要来源工业部门的劳动生产率 |
新窗口打开
碳排放所需一次能源数据来源于《中国能源统计年鉴》(2011—2016)[25,26],碳排放的计算采用IPCC中各种化石能源的平均低位发热量和单位热值含碳量等因子系数。本文研究区域为除西藏、香港、澳门和台湾的中国大陆30省区市,研究时点为2010年和2015年2个横截面。为保持不同年份横截面具有可比性,GDP均采用2005年可比价,为保证模型中随机项的同方差等球形扰动假定,变量数值均取对数形式。
3 结果及分析
3.1 中国省域碳生产率的时空分析
为更清晰地对比省域碳生产率的差异,采用Jenks最佳自然断裂点法将中国省域碳生产率划分为“极低值区”、“较低值区”、“中等值区”、“较高值区”和“极高值区”5个等级(图1)。显示原图|下载原图ZIP|生成PPT
图12010—2015年中国省域碳生产率的空间分布
-->Figure 1The provincial distribution of carbon productivity in China from 2010 to 2015
-->
研究结果显示,基于省域的碳生产率总体上呈现出由南向北递降,由沿海向内陆递降的空间趋势。在2010年中国省域碳生产率研究显示(图1),北京属于碳生产率极高值区域,上海、广东属于碳生产率较高值区域,天津、江苏、浙江、福建、江西、湖南、广西壮族自治区、四川省属于碳生产率中等值区域,河北、辽宁、吉林、黑龙江、安徽、山东、河南、湖北、海南、重庆、云南、青海属于碳生产率较低值区域,山西、内蒙古、贵州、陕西、甘肃、宁夏、新疆属于碳生产率极低值区域,除北京以外,空间分布呈现由东南向西北递减的特征。
到了2015年,中国碳生产率整体上有了一定程度的提高,“较高值区”、“极高值区”等级的省域数量有所增长。北京、上海、广东属于碳生产率极高值区域,湖北、重庆、天津、江苏、浙江、福建、江西、湖南、广西、四川属于碳生产率较高值区域,吉林、安徽、山东、河南、云南属于碳生产率中等值区域,陕西、甘肃、河北、辽宁、黑龙江、海南、青海属于碳生产率较低值区域,山西、内蒙古、贵州、宁夏、新疆属于碳生产率极低值区域。整体空间上仍是由南向北递减,而高值区域集中在沿海一带以及长江流域。
3.2 中国省域碳生产率的影响因素解析
中国省域碳生产率及影响因素的统计特征为表2。结合公式(1)和公式(2),进一步考察省域碳生产率影响因素的空间检验结果(表3)。表3显示,2010年和2015年省域能源结构均具有显著的空间正相关,中国火电通常是在煤炭生产基地就地转化为电力外输,由于煤炭生产分布表现出地理临近性,因此火电分布也反映出显著的空间相关性。而每个地区的产业发展具有适合自己的特点,与地理位置的相关性并不显著,故而产业结构在“十一五”末和“十二五”末并未表现出显著的空间相关性。技术进步在“十一五”末和“十二五”末均具有显著的空间正相关,即各省年专利授权数量显示出空间集聚,呈现为技术外溢的空间衰减特征。劳动生产率则呈现出显著的空间正相关,由于减排措施和对外开放等外部条件受到区位影响,必然会表现出地理邻近性,因此在减排措施和对外开放等外部条件综合影响下劳动生产率也表现出空间集聚特征。Table 2
表2
表22010—2015年中国省域碳生产率及影响因素的描述性统计
Table 2The descriptive statistical values of provincial carbon productivity and its influencing factors in China from 2010 to 2015
影响要素 | 样本数 | 极大值 | 极小值 | 平均值 | 标准差 | |
---|---|---|---|---|---|---|
2010年 | 碳生产率 | 30 | 4.72 | 0.36 | 1.75 | 0.98 |
能源结构 | 30 | 0.99 | 0.21 | 0.78 | 0.22 | |
产业结构 | 30 | 75.10 | 28.60 | 34.75 | 8.66 | |
技术进步 | 30 | 138 382 | 264 | 22 757 | 36 529 | |
劳动生产率 | 30 | 8.76 | 0.60 | 2.09 | 1.95 | |
2015年 | 碳生产率 | 30 | 8.15 | 0.37 | 2.59 | 1.63 |
能源结构 | 30 | 0.99 | 0.10 | 0.73 | 0.26 | |
产业结构 | 30 | 79.65 | 38.80 | 40.71 | 8.70 | |
技术进步 | 30 | 250 290 | 1 217 | 48 501 | 69 227 | |
劳动生产率 | 30 | 15.59 | 1.07 | 3.19 | 3.12 |
新窗口打开
Table 3
表3
表32010—2015年中国省域碳生产率影响因素全局Moran's I检验结果
Table 3The global Moran's I test results of provincial carbon productivity and its influencing factors in China from 2010 to 2015
影响要素 | Moran's I | Z值 | p值 | 空间相关性 | |
---|---|---|---|---|---|
2010年 | 能源结构 | 0.429 | 4.154 | 0.000 | 显著正相关 |
产业结构 | 0.123 | 1.410 | 0.159 | 无显著相关 | |
技术进步 | 0.214 | 2.228 | 0.026 | 显著正相关 | |
劳动生产率 | 0.209 | 2.188 | 0.029 | 显著正相关 | |
2015年 | 能源结构 | 0.485 | 4.667 | 0.000 | 显著正相关 |
产业结构 | 0.055 | 0.804 | 0.421 | 无显著相关 | |
技术进步 | 0.222 | 2.297 | 0.022 | 显著正相关 | |
劳动生产率 | 0.161 | 1.753 | 0.079 | 显著正相关 |
新窗口打开
从表2横截面数据特征以及表3的影响因素空间相关性,设定2010年和2015年两个横截面的全局变量和局域变量,采用混合地理加权回归研究两个时点中国省域碳生产率的影响因素,参数估计值为表4。从表4来看,能源结构对于碳生产率一直呈负向效应,即火电比重的能源结构对碳生产率提高起着阻碍作用,而产业结构、技术进步和劳动生产率则一直呈正向效应,显示这三个影响因素对碳生产率提高起着促进作用。另外,从“十一五”末到“十二五”末这四个影响因素参数的绝对值来看,产业结构变量的参数值远高于其他三个影响变量,说明产业结构变量对碳生产率的影响程度远远大于其他三个影响因素,产业结构对碳生产率起着至关重要的作用。
Table 4
表4
表4基于混合地理加权回归的中国省域碳生产率影响因素参数
Table 4The estimated results of Chinese provincial carbon productivity with mixed geographically weighted regression
变量 | 最小值 | 1/4分位数 | 中位数 | 3/4分位数 | 最大值 | |
---|---|---|---|---|---|---|
2010年 | 能源结构(局域变量) | -0.610 2 | -0.559 7 | -0.521 3 | -0.491 5 | -0.428 2 |
产业结构(全局变量) | 0.879 9 | 0.879 9 | 0.879 9 | 0.879 9 | 0.879 9 | |
技术进步(局域变量) | 0.228 2 | 0.250 2 | 0.258 8 | 0.269 3 | 0.282 0 | |
劳动生产率(局域变量) | 0.043 9 | 0.048 4 | 0.054 9 | 0.062 9 | 0.081 4 | |
2015年 | 能源结构(局域变量) | -0.504 4 | -0.473 3 | -0.451 3 | -0.434 7 | -0.398 8 |
产业结构(全局变量) | 1.040 2 | 1.040 2 | 1.040 2 | 1.040 2 | 1.040 2 | |
技术进步(局域变量) | 0.335 0 | 0.348 0 | 0.353 5 | 0.360 2 | 0.369 0 | |
劳动生产率(局域变量) | 0.022 6 | 0.042 6 | 0.053 9 | 0.068 5 | 0.090 8 |
新窗口打开
在混合地理加权回归结果中,产业结构在省域为常参数,参数估计值从2010—2015年对碳生产率的正向效应在增大,表明服务业所占GDP比重这一影响因素对于碳生产率提高的影响作用在增大。从2010—2015年,全国服务业比重由44.1%上升至50.2%[27],开始占据主导地位,全国绝大部分省域的服务业也呈现出快速发展的势头,其中北京和上海的服务业比重一直居于全国前两位,北京服务业发展具有规模优势,趋向多元化,上海服务业发展具有效率优势,趋向贸易金融型[28],而它们的碳生产率也一直领先于全国其他省域。可见,服务业的发展对于碳生产率提高确实具有显著的促进作用。
深入解析能源结构、技术进步和劳动生产率三个影响因素变参数估计值的时空分布特征,如图2、图3和图4(见第2229页)显示。从能源结构对中国省域碳生产率的影响来看,能源结构对省域碳生产率为负向影响,且呈现出自南向北负值递减的空间分异特征,负值越小,说明阻碍碳生产率的程度越大。中国煤碳主要分布在北方地区,尤其是山西、内蒙古和陕西一直是煤炭主产区,根据中国能源统计年鉴数据显示[27],2010年山西、内蒙古和陕西煤炭在全国产量的占比达到为50%以上,2015年则进一步提高到25.8%、24.3%和14.0%,因此北方地区能源结构对碳生产率影响的负值必然比南方地区小。从各省域能源结构对碳生产率影响的参数值来看,2010年和2015年一直呈负向影响,表明火电比重越低,碳生产率越高。而负向影响参数的绝对值从2010—2015年在减小,显示随着清洁能源政策的实施,全国大部分省份的火电比重有所下降,能源结构对碳生产率的影响程度亦有所减小。因此,进一步降低火电比重,优化能源结构是提高中国碳生产率的关键举措。
显示原图|下载原图ZIP|生成PPT
图22010—2015年能源结构对中国省域碳生产率的影响分布
-->Figure 2The spatial features of energy structure impacts on carbon productivity in the provinces of China from 2010 to 2015
-->
显示原图|下载原图ZIP|生成PPT
图32010—2015年技术进步对中国省域碳生产率的影响分布
-->Figure 3The spatial features of technological progress impacts on carbon productivity in the provinces in China from 2010 to 2015
-->
显示原图|下载原图ZIP|生成PPT
图42010—2015年劳动生产率对中国省域碳生产率的影响分布
-->Figure 4The spatial features of labor productivity impacts on carbon productivity in the provinces of China from 2010 to 2015
-->
从技术进步对碳生产率的影响空间分异来看,技术进步从2010—2015年对中国碳生产率的影响整体上有所提升,在空间上呈现出自北向南逐渐递减的规律,与能源结构的影响正好相反。从2010—2015年,北方地区大部分省域的专利授予权数量相对增长较快,其中青海、甘肃、新疆、天津、陕西和河北高达200%以上,而全国专利授予权数量最多的三个省域广东、江苏和浙江仅仅增长了102%、81%和105%[27]。因此,位于北方地区大部分省域的技术进步对碳生产率提高就起到了较大的影响作用。
劳动生产率对碳生产率的影响参数近年来在南方地区省域有所减弱,空间上亦呈现出自北向南递减的规律。南方地区尤其是东南沿海省份制造业采取的是两头在外的加工贸易模式,利用劳动力成本优势获取微薄的利润,而产品中的高技术高附加值部分被发达国家所赚取。近年来随着产业结构调整,东南沿海地区工业比重有所下降。根据中国统计年鉴数据显示[27],从2010—2015年上海、江苏、浙江和广东的工业增加值占地区生产总值的比重均下降了5%以上,而全部职工数均增加了8‰以上,故全部职工的工业增加值对碳生产率提高的影响程度在减弱。北方地区如辽宁、吉林、黑龙江、山西、内蒙古和新疆的影响参数较高,其中东北三省是中国老工业基地,而山西、内蒙古和新疆作为中国重要的能源基地,单位职工的工业增加值一直较高,对碳生产率提高的影响较大。
总体来看,产业结构是中国提高碳生产率的主导因素,能源结构、技术进步和劳动生产率呈现明显的空间分布特征,优化北方地区省域能源结构,加快南方地区省份的技术进步和提高劳动生产率能更有效地促进全国整体碳生产率的提高。
4 结论与讨论
4.1 结论
碳生产率是反映区域可持续发展的重要标志。提高碳生产率是协调经济发展与应对气候变化的根本保障。碳生产率与单位GDP碳强度互为倒数,单位GDP碳强度是从经济产出角度提出的概念,强调伴随经济产出的碳排放越小越好,而碳生产率则是从经济投入角度提出的概念,强调碳排放作为一种环境要素所带来的经济收益越大越好。本文基于混合地理加权回归模型分析了“十一五”末到“十二五”末中国30省域碳生产率的四个主要影响因素,得出结论:(1)能源结构(火电比重)对于碳生产率具有负向影响,火电比重越高,提高碳生产率的阻碍程度越大,反之亦然;而产业结构(服务业比重)、技术进步(年专利授权数量)和劳动生产率(单位职工的工业增加值)对于碳生产率具有正向影响,服务业比重越大,年专利授权数量越多,单位职工的工业增加值越高,越能促进碳生产率的提高。从影响程度来看,产业结构占据主导地位,其次是能源结构,再次是技术进步,最后为劳动生产率。
(2)产业结构并不具有显著的空间相关性,在混合地理加权回归中为全局变量,且从“十一五”末到“十二五”末,产业结构对碳生产率的影响程度在增大。能源结构具有显著的空间相关性,在混合地理加权回归中为局域变量,对碳生产率的影响程度在空间分布上呈现出明显的自南向北递减特征,技术进步和劳动生产率也均为局域变量,对碳生产率的影响程度却在空间分布上则呈现出明显的自北向南递减特征。“十一五”末到“十二五”末,总体上能源结构和劳动生产率对碳生产率的影响程度在减小,而技术进步的影响程度在增大。
4.2 讨论
(1)混合地理加权回归是一种比较新的回归分析方法,与传统回归分析和地理加权回归不同的是,解释变量中既有全局变量,也有局域变量。传统回归分析假设样本点满足空间随机分布,不具有显著的空间相关性,而地理加权回归则认为样本点具有显著的空间相关性,在空间分布呈现集聚或扩散的状态。但实际上,在地区的碳生产率所涉及的解释变量中,往往既存在具有显著空间相关性的局域变量,也存在无显著空间相关性的全局变量,并且同时作用于碳生产率的改变。当需要把全局变量和局域变量同时纳入到决策者的回归分析中时,混合地理加权回归就成为了一种较理想的方法选择。(2)由于上述研究成果是通过空间自相关检验来设置自变量是否为全局变量或局域变量,因此得到的研究结论更符合中国低碳发展的实际情况。从全国角度来看,产业结构不具有空间相关性且对碳生产率影响程度在增大,因此产业结构调整适用于全国所有省域,具有普适性。加快推进各省域产业结构升级,提高服务业比重是提高全国碳生产率首先应采取的措施。从区域角度来看,北方地区的能源结构对本地碳生产率阻碍程度相对高一些,应优先考虑北方地区尤其是山西、内蒙古和陕西能源结构的优化有助于提高自身的碳生产率。此外,积极促进南方地区省份技术进步和劳动生产率,也有助于加快全国整体碳生产率的提高。
The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | |
[2] | [J]., |
[3] | [J]. , [J]. , |
[4] | [J]. , [J]., |
[5] | [J]. , |
[6] | [J]. , [J]. , |
[7] | [J]. , [J]. , |
[8] | , |
[9] | [J]. , |
[10] | [J]. , [J]. , |
[11] | ., , |
[12] | [J]. , [J]. , |
[13] | |
[14] | |
[15] | [J]. , [J]. , |
[16] | [J]. , [J]. , |
[17] | . , , |
[18] | [J]. , [J]., |
[19] | [J]. , [J]., |
[20] | [J]. , [J]., |
[21] | [J]. , |
[22] | [J]. , |
[23] | [J]. , |
[24] | [J]. , |
[25] | |
[26] | |
[27] | |
[28] | [J]. , [J]., |