Modeling soil erosion and sediment yield using WaTEM/SEDEM for Yihe River Basin
LI Zijun,1, XU Yanlin1, WANG Haijun2, MA Liang3, JIANG Aixia,11. College of Geography and Environment, Shandong Normal University, Jinan 250358, China 2. Hydrological Department of Shandong Provincial Bureau of Hydrology, Jinan 250014, China 3. Water Resources Research Institute of Shandong Province, Shandong Society of Soil and Water Conservation, Jinan 250013, China
Abstract Based on the WaTEM/SEDEM model calibrated and verified by the sediment transport data from Linyi and Jiaoyi hydrological stations, this paper analyzed and simulated the characteristics of spatio-temporal variation of soil erosion and sediment yield in the Yihe River Basin from 1975 to 2015, and further studied the effects of precipitation, terrain and land use changes on soil erosion and sediment yield in the basin. The results showed that: (1) The sediment carrying capacity coefficients Ktc-low and Ktc-high in the basin were optimal under the combined effect of 40 m and 150 m, and the model had good applicability. (2) From 1975 to 2015, the basin was dominated by soil erosion, and the area of micro soil erosion was the largest, followed by severe soil erosion, and soil deposition was mainly distributed in the valley. Soil erosion intensity increased first and then decreased, and the soil erosion modulus increased from 30.92 t·hm-2·a-1 in 1975 to 49.32 t·hm-2·a-1 in 1995, then decreased to 29.60 t·hm-2·a-1 in 2015. The average soil erosion modulus of each county (district) was listed in an order of Yishui county > Feixian county > Yinan county > Yiyuan county > Mengyin county > Pingyi county > Lanshan district. (3) The variation of soil erosion intensity was the result of the comprehensive effects of precipitation, terrain and land use. From 1975 to 2015, the rainfall erosivity of the basin showed a trend of first decreasing, then increasing and decreasing again. The average rainfall erosivity of each county (district) was in an order of Feixian county > Lanshan district > Yinan county > Mengyin county > Pingyi county > Yishui county > Yiyuan county, and the spatio-temporal variation of rainfall erosivity were not completely consistent with that of the soil erosion intensity. The spatial distribution of terrain niche grade basically coincided with that of the soil erosion intensity. The dominant terrain niche range of soil erosion was 4-6 grades, which meant that the elevation was 75-428 m, and the slope gradient was 5°-39°. The transformation between cultivated land and forest land was the main reason for the conversion of soil erosion intensity. The area of erosion intensity increased by 3389.97 hm 2·a-1 when forest land was transformed into cultivated land, and decreased by 2216.65 hm2·a-1 when farmland was converted to forest land. However, the conversion of grassland and other land use types had less impact on the soil erosion intensity of the basin. This study can provide a reference for regional land use pattern adjustment and soil erosion control. Keywords:WaTEM/SEDEM model;soil erosion;spatio-temporal variation;land use;Yihe River Basin
PDF (5965KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李子君, 许燕琳, 王海军, 马良, 姜爱霞. 基于WaTEM/SEDEM模型的沂河流域土壤侵蚀产沙模拟[J]. 地理研究, 2021, 40(8): 2380-2396 doi:10.11821/dlyj020200714 LI Zijun, XU Yanlin, WANG Haijun, MA Liang, JIANG Aixia. Modeling soil erosion and sediment yield using WaTEM/SEDEM for Yihe River Basin[J]. Geographical Research, 2021, 40(8): 2380-2396 doi:10.11821/dlyj020200714
目前,流域尺度的土壤侵蚀主要从产生机制、生态效应和侵蚀风险评价等方面展开研究[8,9,10]。随着研究的不断深入,国内外****针对不同地区、不同环境的流域采取了不同的研究方法,主要有同位素示踪、沉积物分析和模型的定量化研究[11,12,13]。土壤侵蚀模型在流域尺度的侵蚀模拟方面具有较高的优势,因此成为定量化研究土壤侵蚀的重要手段,现有研究以经验统计模型、物理过程模型和分布式模型应用较为广泛。经验统计模型如RUSLE在计算土壤侵蚀量时忽略了泥沙的沉积和空间的变异性,物理过程模型如WEPP对数据要求较为严格[14,15,16],同时这些模型在结构的复杂性、数据的输入量以及研究尺度等方面存在很大的差异,即使在相同的研究区域,不同的土壤侵蚀模型会得到不同的土壤侵蚀率[17],因此,在开展相关研究时选择适当的模型尤为重要。WaTEM/SEDEM(Water and Tillage Erosion Model and Sediment Delivery Model)模型是一种空间分布式土壤侵蚀模型,能够模拟土壤在流域内的沉积和输送[18],预测河道中的泥沙运移量[19],解析河流污染物来源[20]以及评估水利水保措施的有效性[21]。由于该模型参数少、结构简单、数据获取相对容易,并且能够充分考虑土地利用、流域连通性和地块尺度等因素对侵蚀产沙的影响[22],在不同尺度的流域侵蚀产沙分析模拟方面具有较大的优势和潜力。截至目前,该模型已在国内外具有不同气候、地形和土地利用类型的区域得到了充分的校正和验证[23,24,25]。气候、地形和土地利用是影响土壤侵蚀的重要因素,将该模型模拟与RS、GIS结合是分析其影响效应的有效手段,被广泛应用于中国东北黑土区、西班牙穆尔西亚[22,26]等地区,但现有相关研究多集中于小流域尺度[27,28],在中尺度乃至大尺度流域上的应用仍较为匮乏。
Fig. 1Location of Yihe River Basin and distribution of administrative regions, river systems, hydrological stations, meteorological stations and reservoirs
式中:E为土壤侵蚀强度(kg (m2a)-1);R为降雨侵蚀力因子(MJ mm (m2h a)-1);K为土壤可蚀性因子(kg h (MJ mm)-1);C为土地管理因子;P为水土保持措施因子;LS2D为二维地形因子。坡度计算参考陈思旭等[30],为了使坡长因子能够反映水流特征,Desmet等用上游汇流面积计算坡长来修正坡长因子[31],计算公式为:
依据《北方土石山区水土流失综合治理技术标准》(SL665-2014)中的水蚀强度分级标准,将其划分为剧烈侵蚀(<-60 t hm-2a-1)、极强烈侵蚀(-60~–40 t hm-2a-1)、强烈侵蚀(-40~-25 t hm-2a-1)、中度侵蚀(-25~-10 t hm-2a-1)、轻度侵蚀(-10~-2 t hm-2a-1)、微度侵蚀(-2~0 t hm-2a-1)以及沉积(>0 t hm-2a-1)7个等级,并计算出不同年份各土壤侵蚀强度等级的面积及其占流域总面积的百分比(表2)。由表2可以看出,沂河流域主要以侵蚀为主,侵蚀面积超过95%,沉积面积仅占不到5%。其中,微度侵蚀面积占流域总面积的50%以上;其次是剧烈侵蚀,占比在10% ~ 19%;极强烈侵蚀所占面积不到流域面积的5%,占比最小。
Tab. 2 表2 表21975—2015年沂河流域土壤侵蚀/沉积面积和占比 Tab. 2Area and proportion of soil erosion and sedimentary inYihe River Basin from 1975 to 2015
沂河流域多年平均土壤侵蚀模数达到35.76 t hm-2a-1。从土壤侵蚀的时间变化看,1975—2015年流域内总体侵蚀产沙强度呈现先增加后减少的趋势(表3)。1975—1995年侵蚀产沙强度在波动中上升,总产沙量由1975年的3099万t增加至1995年的4945万t,年均产沙模数由1975年的30.92 t hm-2a-1增加至1995年的49.32 t hm-2a-1,强烈侵蚀、中度侵蚀和轻度侵蚀面积均呈微弱的减小态势,剧烈侵蚀面积增加34.26%,年均产沙模数升高59.54%。1995年后,土壤侵蚀强度开始降低,至2015年总产沙量降低至2968万t,年均产沙模数由49.32 t hm-2a-1下降至29.60 t hm-2a-1,微度侵蚀和轻度侵蚀面积均显著增加,剧烈侵蚀面积大大减少,减少率达26.30%。流域土壤侵蚀的这种时间变化特点,除了降水的影响,还与流域生态建设有关。沂河流域自20世纪80年代开始以小流域为单元进行综合治理,但初期以点片治理为主,没有形成完善的水土保持体系,治理水平较低。20世纪90年代以来,流域有计划、有组织地大规模进行小流域综合治理,尤其是从1998年起,流域内相继实施了中央财政预算内专项资金(国债)水土保持项目、淮河流域水土保持工程建设项目、国家水土保持重点工程建设项目等,因地制宜地实施退耕还林、荒山造林以及坡改梯等水土保持工程,水土流失治理水平不断提高,对流域土壤侵蚀的防治发挥了重要的作用。
Tab. 3 表3 表31975—2015年沂河流域不同行政区平均土壤侵蚀模数 Tab. 3Average soil erosion modulus in different administrative regions of Yihe River Basin from 1975 to 2015 (单位:t·hm-2·a-1)
利用ArcGIS 10.2叠加分析得出各年份不同地形位等级下的平均侵蚀模数(图6)。整体上看,1975—2015年流域的平均侵蚀模数均随地形位等级的上升呈现先升高后降低的变化趋势,在1~4级地形位区间内,地形位等级越高,侵蚀产沙强度越高,这主要归因于土壤侵蚀临界坡度内土壤侵蚀模数随坡度的增加而增加,同时低海拔、低坡度的区域是耕地的优势地形位,而耕地尤其是坡耕地相较于其他类型的土地利用方式更容易受到侵蚀;当地形位大于4级时,侵蚀强度开始下降,一方面由于较大坡度对土壤侵蚀具有负向效应,即当坡度大于临界坡度[44]时,土壤侵蚀量随坡度的增加而减少。研究区土壤侵蚀临界坡度在15°~20°之间[45],而坡度大于15°的地区98%位于地形位5~10级之间,因此该区域较大坡度对土壤侵蚀存在负向影响;另一方面高地形位下开展农业活动的困难性以及封山育林、中幼林抚育等水土保持措施的实施也会导致该区域侵蚀产沙强度随地形位升高而降低。研究时段内,流域侵蚀产沙的优势地形位在4~6之间,各年份在该区间内的侵蚀模数在61.90 t hm-2a-1~138.34 t hm-2a-1之间,均达到剧烈侵蚀程度,而该级地形位面积占流域总面积的65.33%,表明4~6地形位区间是水土流失重点监测区,该区间治理难度大、范围广,相关部门应针对该区间内的高程和坡度制定相应的土壤侵蚀防治措施。
注:C-F:耕地转林地;C-G:耕地转草地;C-U:耕地转未利用地;F-C:林地转耕地;F-G:林地转草地;F-U:林地转未利用地;G-C:草地转耕地;G-F:草地转林地;G-U:草地转未利用地;U-C:未利用地转耕地;U-F:未利用地转林地;U-G:未利用地转草地。 Fig. 7Areas of different land use type transformations in Yihe River Basin from 1975 to 2015
(2)1975—2015年,沂河流域主要以土壤侵蚀为主,微度侵蚀面积所占比例最大,其次是剧烈侵蚀,极强烈侵蚀所占面积最小。从时间变化看,研究时段内土壤侵蚀强度呈现先增加后减小的变化趋势,年产沙量由3099万t增加至4945万t后又降至2968万t,年均产沙模数由30.92 t hm-2a-1增加至49.36 t hm-2a-1后又下降至29.60 t hm-2a-1;从空间变化看,侵蚀严重的区域位于流域北部的鲁山、沂山、蒙山山脉以及南部的尼山山脉处,沉积主要分布在坡脚和河谷处;各县(区)平均侵蚀模数为沂水县>费县>沂南县>沂源县>蒙阴县>平邑县>兰山区。
然而,WaTEM/SEDEM模型假设进入河道的泥沙能够全部输出流域,并没有考虑河道侵蚀以及重力侵蚀等因素,因此在计算流域泥沙收支时,忽略了河网内的泥沙来源和淤积面积,易导致模拟结果出现一定误差。通过对比研究区的相关研究,如张明礼等通过137Cs示踪法得到2008年北方土石山区侵蚀模数在10.66~59.26 t hm-2a-1之间[46],刘瑞娟等利用RUSLE模型计算出2001年临沂流域侵蚀模数在50.66~390.94 t hm-2a-1之间[47],均与本研究结论相接近,可见研究结果是可信的,但在今后的研究中应积极探讨模型的优化和改进方案。由于流域尺度较大,高分辨率的输入数据在中尺度的沂河流域上的模拟较为困难,因此本研究只能利用100 m分辨率的DEM数据模拟沂河流域侵蚀产沙。根据Verstraetn[48]所提出的观点,低分辨率的DEM会使陡坡变平,从而降低了平均侵蚀速率,但也增加了较平坦的下坡地区泥沙的空间运输能力,故而利用较粗分辨率的DEM来模拟较大流域尺度的输沙量是相当准确的,但流域内部空间变异性预测的准确性尚未得到有效的验证。基于此,Verstraeten等在2007年提出通过流域划分的方法运用WaTEM/SEDEM模型模拟大尺度流域的土壤侵蚀产沙,并在Murrumbidgee流域得到了成功的应用[49]。然而经过流域划分后所需数据量大,数据获取较困难,因此在利用WaTEM/SEDEM模型对大、中尺度流域进行侵蚀产沙的模拟时,选择合适的模拟方案应是下一步的研究重点。
[ WuXiuqin, CaiYunlong. Advances of researches on relationship between LUCC and soil erosion Progress in Geography, 2003, 22(6):576-584.] [本文引用: 1]
Didoné EJ, MinellaJ P G, EvrardO. Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil , 2017, 174:24-33. DOI: 10.1016/j.still.2017.05.011. URL [本文引用: 1]
Shi ZH, AiL, Fang NF, et al. Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China , 2012, 438:156-167. DOI: 10.1016/j.jhydrol.2012.03.016. [本文引用: 1]
[ JiangYanmin, GuoMinghang, ZhaoJun, et al. Digital close range photogrammetry system for soil erosion Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7):281-290.] DOI: 10.6041/j.issn.1000-1298.2019.07.031. [本文引用: 1]
LiuY, XuY, ZhangF, et al. The impact of biofuel plantation on biodiversity: A review , 2014, 59(34):4639-4651. DOI: 10.1007/s11434-014-0639-1. URL [本文引用: 1]
[ ZhangLetao, LiZhanbin, WangHe, et al. Spatial scale effects on sediment delivery within runoff erosion chains in basin system Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13):87-94.] DOI: 10.11975/j.issn.1002-6819.2016.13.013. [本文引用: 1]
De VenteJ, PoesenJ, VerstraetenG, et al. Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain , 2008, 60(3-4):393-415. DOI: 10.1016/j.gloplacha.2007.05.002. URL [本文引用: 1]
TuoD, XuM, GaoG. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau , 2018, 633:1032-1040. DOI: 10.1016/j.scitotenv.2018.03.237. URL [本文引用: 1]
刘前进, 于兴修. 北方土石山区土壤侵蚀强度垂直景观格局: 以沂蒙山区为例 , 2010, 29(8):1471-1483. DOI:10.11821/yj2010080012 [本文引用: 1] 以具北方土石山区典型特征的沂蒙山区为例,在分析土壤侵蚀过程的基础上,选取具生态学意义的侵蚀强度景观格局指数,从垂直维度上分析侵蚀景观格局变化特征。结果表明:土壤侵蚀景观格局具有显著垂直分带性。50~200带为低侵蚀稳定区,人类活动影响大,缀块成片分布,连通性强,形状较规则;400~800带为高侵蚀稳定区,自然因素起主导作用,缀块密度大且分散,形状较复杂;200~400带为侵蚀景观急剧变化区,侵蚀程度随高程增加而增大,自然因素作用增强。微度与轻度侵蚀景观、强烈与极强烈侵蚀景观具相同垂直变化趋势,此两组侵蚀景观变化趋势的差异主要分布于低于300带和高于500带处;中度侵蚀景观变化趋势可视为前两组侵蚀景观变化趋势的过渡。 [ LiuQianjin, YuXingxiu. Vertical landscape pattern on soil erosion intensity in the rocky area of northern China: A case study in the Yimeng Mountainous Area, Shandong Geography Research, 2010, 29(8):1471-1483.] [本文引用: 1]
[ ZhangLihua, LiHui, ZhangYanyan. Evaluation of soil erosion rate in Danjiangkou city using 137Cs tracing method Scientia Geographica Sinica, 2009, 29(2):273-277.] [本文引用: 1]
[ WangHongya, HuoYuying, WuXiuqin, et al. Mineral-magnetic characteristics of sediments from Shibanqiao Reservoir, Guanling county, Guizhou province and their implications on soil erosion Geography Research, 2006, 25(5):865-876.] [本文引用: 1]
薛天翼, 武旭同, 朱晨怡, 等. 红水河流域输沙量变化及其影响因素 , 2019, 38(5):772-782. DOI:10.18306/dlkxjz.2019.05.013 [本文引用: 1] 红水河是珠江流域的主要泥沙来源,为了确定1955—2016年红水河流域输沙量变化特征及其影响因素,论文尝试采用有序聚类分析确定了流域输沙量变化的3个时期,并利用泥沙归因诊断分析计算了含沙量、径流系数和降雨因子在不同时期对输沙量变化的贡献程度,在此基础上进一步对影响输沙量变化的主要因素进行了分析。研究表明:1955—2016年间红水河流域输沙量存在1963和1991年2个突变点,在突变点前后输沙量存在明显变化,且这一变化主要受含沙量因子控制,人类活动是造成流域输沙量变化的根本原因。其中在1955—1991年间,红水河输沙量的上升主要由毁林开荒引起的流域水土流失面积增加所导致;而在1964—2016年间,水库修建使红水河流域输沙量减少了83.49%,而同时期植被覆盖度的增长贡献了输沙量减少的12.03%。将WaTEM/SEDEM模型模拟结果与实测结果进行对比,同样发现1964—2016年输沙量变化的绝大部分(81.03%)由修建水库所贡献,而土地利用变化对输沙量减少的贡献相对较小(18.97%)。 [ XueTianyi, WuXutong, ZhuChenyi, et al. Change of sediment load and its influencing factors in the Hongshui River Basin in Southwestern China Progress in Geography, 2019, 38(5):772-782.] DOI: 10.18306/dlkxjz.2019.05.013. [本文引用: 1]
Lewis LA, VerstraetenG, ZhuH. RUSLE applied in a GIS framework: calculating the LS factor and deriving homogeneous patches for estimating soil loss , 2005, 19(7):809-829. DOI: 10.1080/13658810500105705. URL [本文引用: 1]
GrumB, WoldearegayK, HesselR, et al. Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM) , 2017, 159:20-34. DOI: 10.1016/j.catena.2017.07.018. URL [本文引用: 1]
Yesuf HM, AssenM, AlamirewT, et al. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia , 2015, 127:191-205. DOI: 10.1016/j.catena.2014.12.032. URL [本文引用: 1]
KamilaHlavová, SKohnová, YVelísková, et al. Comparison of two concepts for assessment of sediment transport in small agricultural catchments , 2018, 66(4):404-415. DOI: 10.2478/johh-2018-0032. URL [本文引用: 1]
LiuY, FuB. Assessing sedimentological connectivity using WATEM/SEDEM model in a hilly and gully watershed of the Loess Plateau, China , 2016, 66:259-268. DOI: 10.1016/j.ecolind.2016.01.055. URL [本文引用: 1]
De VenteJ, PoesenJ, VerstraetenG, et al. Predicting soil erosion and sediment yield at regional scales: Where do we stand? , 2013, 127:16-29. DOI: 10.1016/j.earscirev.2013.08.014. URL [本文引用: 1]
KrasaJ, DostalT, JachymovaB, et al. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs-Watershed analyses using WaTEM/SEDEM , 2019, 171:470-483. DOI: 10.1016/j.envres.2019.01.044. URL [本文引用: 1]
Quiñonero-Rubio JM, NadeuE, Boix-FayosC, et al. Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield , 2016, 27(4):1018-1031. DOI: 10.1002/ldr.2331. URL [本文引用: 1]
FangH. Impact of land use change and dam construction on soil erosion and sediment yield in the black soil region, Northeastern China , 2017, 28(4):1482-1492. DOI: 10.1002/ldr.2677. URL [本文引用: 2]
Delgado M EM, CantersF. Modeling the impacts of agroforestry systems on the spatial patterns of soil erosion risk in three catchments of Claveria, the Philippines , 2012, 85(3):411-423. DOI: 10.1007/s10457-011-9442-z. URL [本文引用: 1]
BezakN, RusjanS, PetanS, et al. Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation procedure , 2015, 74(6):5245-5261. DOI: 10.1007/s12665-015-4534-0. URL [本文引用: 1]
WilkenF, BaurM, SommerM, et al. Uncertainties in rainfall kinetic energy-intensity relations for soil erosion modelling , 2018, 171:234-244. DOI: 10.1016/j.catena.2018.07.002. URL [本文引用: 1]
Boix-FayosC, Vente JD, Martínez-MenaM, et al. The impact of land use change and check-dams on catchment sediment yield , 2008, 22(25):4922-4935. DOI: 10.1002/hyp.7115. URL [本文引用: 1]
HaiyanF, LiyingS. Modelling soil erosion and its response to the soil conservation measures in the black soil catchment, Northeastern China , 2017, 165:23-33. DOI: 10.1016/j.still.2016.07.015. URL [本文引用: 1]
Van LooM, DusarB, VerstraetenG, et al. Human induced soil erosion and the implications on crop yield in a small mountainous Mediterranean catchment (SW-Turkey) , 2017, 149:491-504. DOI: 10.1016/j.catena.2016.08.023. URL [本文引用: 1]
盛美玲, 方海燕. WaTEM/SEDEM模型及其应用研究进展与展望 , 2014, 33(1):85-91. DOI:10.11820/dlkxjz.2014.01.010 [本文引用: 1] 土壤侵蚀产沙模型是开展水土保持研究的重要工具。土壤侵蚀物理模型除能够模拟和预测土壤侵蚀沉积的空间分布外,其可移植性功能较强,因此得到了很多研究者的青睐,但大多数物理模型运行时需要的参数较多,因而限制了模型应用和推广。本文介绍了比利时鲁汶大学研发的分布式土壤侵蚀模型WaTEM/SEDEM(Waterand Tillage Erosion Model and Sediment Delivery Model)模型,分别从WaTEM/SEDEM 模型的产生、结构、国内外应用进行了系统阐述,并在已有的应用研究基础上,总结了该模型的优缺点,展望其应用前景。 [ ShengMeiling, FangHaiyan. Research progress in WaTEM/SEDEM model and its application prospect Progress in Geography, 2014, 33(1):85-91.] DOI: 10.11820/dlkxjz.2014.01.010. [本文引用: 1]
[ ChenSixu, YangXiaohuan, XiaoLinlin, et al. Study of soil erosion in the Southern Hillside Area of China based on RUSLE model Resources Science, 2014, 36(6):1288-1297.] [本文引用: 1]
Desmet P JJ, GoversG. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units , 1996, 51(9):427-433. [本文引用: 1]
Desmet P JJ, GoversG. GIS-based simulation of erosion and deposition patterns in an agricultural landscape: A comparison of model results with soil map information , 1995, 25(1-4):389-401. DOI: 10.1016/0341-8162(95)00019-O. URL [本文引用: 2]
Van OostK, GoversG, DesmetP. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage , 2000, 15(6):577-589. DOI: 10.1023/A:1008198215674. URL [本文引用: 2]
[ YangXuan, LiangYin, FangJiqing, et al. Constitution of monthly rainfall erosivity models based on information of daily rainfall Acta Pedologica Sinica, 2010, 47(2):216-222.] [本文引用: 1]
ZhuG, TangZ, ShangguanZ, et al. Factors affecting the spatial and temporal variations in soil erodibility of China , 2019, 124(3):737-749. DOI: 10.1029/2018JF004918. URL [本文引用: 1]
LiP, ZangY, MaD, et al. Soil erosion rates assessed by RUSLE and PESERA for a Chinese Loess Plateau catchment under land-cover changes , 2020, 45, 707-722. DOI: 10.1002/esp.4767. URL [本文引用: 1]
[ YangShaoyang. The analysis of soil erosion pattern in national key harnessing areas of Yimeng Mountains based on CSLE Model Shandong Agricultural University, 2014: 36-39.] [本文引用: 1]
[ GaoFeng, HuaCui, LuYuan, et al. Research on spatial distribution characteristics of soil erosion intensity based on terrain gradient Research of Soil and Water Conservation, 2014, 21(2):22-26.] DOI: 10.13869/j.cnki.rswc.2014.02.005. [本文引用: 1]
[ YuHong, ZengHui, JiangZiying. Study on distribution characteristics of landscape elements along the terrain gradient Scientia Geographica Sinica, 2001, 21(1):64-69.] DOI: 10.13249/j.cnki.sgs.2001.01.012. [本文引用: 1]
[ GongWenfeng, YuanLi, FanWenyi. Analysis on land use pattern changes in Harbin based on terrain gradient Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2):250-259, 303.] DOI: 10.3969/j.issn.1002-6819.2013.02.034. [本文引用: 1]
VerstraetenG, PoesenJ, GillijnsK, et al. The use of riparian vegetated filter strips to reduce river sediment loads: An overestimated control measure? , 2006, 20(20):4259-4267. DOI: 10.1002/hyp.6155. [本文引用: 1]
[ HuShixiong, JinChangxing. Theoretical analysis and experimental study on the critical slope of erosion Acta Geographica Sinica, 1999, 54(4):3-5.] [本文引用: 1]
[ LiYang, LiuXia, YaoXiaoyou, et al. Coupling relationship between soil erosion and environmental factors in typical watershed of Yimeng Mountain Research of Soil and Water Conservation, 2011, 18(2):66-70, 271.] [本文引用: 1]
[ ZhangMingli, YangHao, ZouJun, et al. Effects of soil erosion on soil quality in the Rocky Mountain Areas of Northern China Journal of Soil and Water Conservation, 2011, 25(2):218-221.] DOI: 10.13870/j.cnki.stbcxb.2011.02.043. [本文引用: 1]
[ LiuRuijuan, ZhangWanchang. A distributed model of soil erosion based on dynamic runoff mechanisms Bulletin of Soil and Water Conservation, 2010, 30(6):139-144.] DOI: 10.13961/j.cnki.stbctb.2010.06.029. [本文引用: 1]
VerstraetenG, Prosser IP, FogartyP. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia , 2007, 334(3-4):440-454. DOI: 10.1016/j.jhydrol.2006.10.025. URL [本文引用: 1]