删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

顾及非线性改正的动力学方法反演GRACE时变重力场模型

本站小编 Free考研考试/2022-01-03

梁磊1,2,,
于锦海1,2,,,
朱永超3,
万晓云4,
常乐1,2,
徐焕1,2,
王凯5
1. 中国科学院计算地球动力学重点实验室, 北京 100049
2. 中国科学院大学地球与行星科学学院, 北京 100049
3. 山东交通学院, 济南 250357
4. 中国地质大学(北京)土地科学技术学院, 北京 100083
5. 总装备部工程设计研究总院, 北京 100028

基金项目: 国家自然科学基金项目(41774089,41504018,41674026),国家重点研发计划(2016YFB0501702),CAS/CAFEA国际创新团队项目(KZZD-EW-TZ-19)联合资助


详细信息
作者简介: 梁磊, 男, 1990年生, 主要从事物理大地测量、卫星重力和卫星轨道的研究.E-mail:lianglei14@mails.ucas.edu.cn
通讯作者: 于锦海, 男, 1961年生, 教授, 主要从事大地测量学、地球重力学的研究.E-mail:yujinhai@ucas.edu.cn
中图分类号: P223, P228

收稿日期:2018-10-08
修回日期:2018-11-27
上线日期:2019-09-05



Recovered GRACE time-variable gravity field based on dynamic approach with the non-linear corrections

LIANG Lei1,2,,
YU JinHai1,2,,,
ZHU YongChao3,
WAN XiaoYun4,
CHANG Le1,2,
XU Huan1,2,
WANG Kai5
1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China
2. College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
3. Shandong Jiaotong University, Jinan 250357, China
4. School of Land Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China
5. Center for Engineering Design and Research under the Headquarters of General Equipment, Beijing 100028, China


More Information
Corresponding author: YU JinHai,E-mail:yujinhai@ucas.edu.cn
MSC: P223, P228

--> Received Date: 08 October 2018
Revised Date: 27 November 2018
Available Online: 05 September 2019


摘要
本文利用解的叠加原理求解了轨道扰动微分方程组,构建了扰动位系数与轨道和星间距变率的观测方程,并分别引入非线性改正项.通过惯性坐标系与运动坐标系的转换求解状态转移方程组,分析了观测方程的低频误差特征,导出了目前常用的消除剩余星间距变率低频误差的五参数或七参数经验公式.此外,根据非惯性力模型误差是分段标定的特点,提出利用三次样条函数来处理低频误差,通过模拟计算表明三次样条函数处理低频误差略优于七参数.最后,处理实际的GRAEC Level-1b数据,解算了2006年1月至2009年12月期间的月时变重力场模型UCAS_Grace01,通过在不同区域进行比较可以得出本文计算的时变重力场模型与国际官方机构精度基本是一致的结论.
时变重力场/
GRACE/
动力学积分法/
低频误差/
非线性改正

In this paper, the system of orbital perturbation equation is solved by using the superposition principle of solutions, and the observational equations of disturbance potential coefficients with orbital perturbation and range rate introducing non-linear correction term separately are derived. The state transition equations are solved by coordinate transformation between inertial coordinate system and moving coordinate system, the low-frequency error characteristics of the observation equations are analyzed, and the five-parameter or seven-parameter empirical formula for eliminating the low-frequency error of residual range rate is derived. In addition, the cubic spline function is proposed to deal with the low-frequency error according to the characteristic that the non-inertial force error model is segmentally calibrated. The simulation results show that the cubic spline function is slightly better than seven parameters in dealing with the low-frequency error. Finally, by processing the actual GRACE Level-1b data, the monthly time-varying gravity field model UCAS_Grace01 from January 2006 to December 2009 is solved and it can be concluded that the time-varying gravity field model computed in this paper is basically consistent with the international official institution model in accuracy by comparing in different regions.
Time-variable gravity field/
GRACE/
Dynamic integral approach/
Low frequency error/
Nonlinearcorrection



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_15145
相关话题/北京 计算 地球 卫星 国际