删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Context模型的Shearlet变换地面微地震随机噪声压制

本站小编 Free考研考试/2022-01-03

李月,
邵丹,
张超,
马海涛,
吉林大学, 长春 130000

基金项目: 国家自然科学基金重点项目(41574096)资助


详细信息
作者简介: 李月, 女, 1958年生, 教授, 博士生导师, 主要从事信号与信息处理和地震勘探噪声压制研究.E-mail:liyue@jlu.edu.cn
通讯作者: 马海涛, 男, 1969年生, 副教授, 研究生导师, 主要从事信号与信息处理和地震勘探噪声压制研究.E-mail:maht@jlu.edu.cn
中图分类号: P631

收稿日期:2017-09-16
修回日期:2018-04-23
上线日期:2018-12-05



Surface microseismic random noise suppression by Shearlet transform based on Context model

LI Yue,
SHAO Dan,
ZHANG Chao,
MA HaiTao,
Jilin University, Changchun 130000, China



More Information
Corresponding author: MA HaiTao,E-mail:maht@jlu.edu.cn
MSC: P631

--> Received Date: 16 September 2017
Revised Date: 23 April 2018
Available Online: 05 December 2018


摘要
地面微地震监测采集到的微地震信号通常能量微弱,信噪比低,如何提高微震数据的信噪比是数据处理的难题.Shearlet变换是一种新型的多尺度几何分析方法,具有敏感的方向性和较强的稀疏表示特性,能起到很好的随机噪声压制效果.由于地面微震数据的有效信号大多被淹没在噪声中,基于传统阈值的Shearlet变换(the traditional threshold-based Shearlet transform TST)只考虑到尺度或方向的阈值,在去噪过程中会过度扼制有效信号系数,造成有效信号能量损失.因而,本文建立Context模型,得到基于Context模型的Shearlet变换(the Context-model-based Shearlet transform CMST)方法,改进传统Shearlet阈值方法的不足.我们通过所建立的Context模型将能量相近的各方向系数划分为同一组,并分组估计阈值,分别处理各部分系数,达到微弱同相轴有效恢复的目的.通过TST及CMST的模拟实验与实际地面微震记录处理结果对比可知,本文方法在低信噪比条件下比对比方法更加有效地恢复地面微震数据的微弱信号,随机噪声压制效果明显,在-10 dB条件下,提升信噪比18.3741 dB.
地面微地震监测/
随机噪声/
Shearlet变换/
Context模型

Microseismic monitoring technique is an important means of unconventional oil and gas exploration. Surface microseismic monitoring is becoming more common in analyzing unconventional hydrocarbon resources. However, the low signal-to-noise ratio (SNR) greatly hinders the realization of the identification and location of microseismic events. Therefore, it is vital to eliminate noise and improve the SNR in the processing of surface microseismic data. Shearlet transform is a new kind of multiscale geometric analysis method, which has the characteristics of sensitive direction and strong sparse representation, can reduce the random noise well by properly setting a threshold to the shearlet coefficients. In the process of surface microseismic random noise suppression, it is difficult for the traditional threshold-based Shearlet transform (TST) method to break through the limitation of recovering the weak signal. The TST method only considering the scale or direction threshold will excessively curb effective signal coefficient in the denoising process, causing energy losses. In this paper, through the establishment of Context model, we get the Context-model-based Shearlet transform (CMST) method to improve the traditional method. Due to the wide numerical range of the shearlet coefficients of scale layers in all directions, unified threshold for the coefficients of shrinkage is not the optimal choice. The CMST method establishes the Context model to group the scale layers coefficients in all directions, considering the position threshold of the shearlet coefficients, and sets up the reasonable threshold of each group. Through several simulation experiments and processing of actual surface microseismic data, we can conclude that the proposed method is more effective in restoring the weak signal and enhancing the SNR by 18.3741 dB under the condition of raw SNR of -10 dB.
Surface microseismic monitoring/
Random noise/
Shearlet transform/
Context model



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_14801
相关话题/地震 信号 数据 信号与信息处理 过程