删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院地质与地球物理研究所导师教师师资介绍简介-孔屏

本站小编 Free考研考试/2020-05-30

姓名: 孔屏 性别:

职称: 研究员 学位: 博士

电话: 传真:

Email: pingkong@mail.igcas.ac.cn 邮编: 100029

地址: 北京朝阳区北土城西路19号,中科院地质与地球物理研究所


更多信息:
【English】 地球与行星物理院重点实验室


简历:
学习经历:
1981—1985 北京大学技术物理系,放射化学专业,获学士学位
1985—1988 中国科学院高能物理研究所,核技术专业,获硕士学位
1993—1996 日本东京都立大学,宇宙化学专业,获博士学位
工作经历:
1988—1992 中国科学院高能物理研究所,助理研究员
1995—1997 日本JSPS特别研究员,在东京都立大学工作
1997—1999 德国洪堡学员,在科隆大学矿物和地球化学研究所工作
1999—2001 美国加州大学伯克利分校空间科学研究室,博士后
2001—至今中国科学院地质与地球物理研究所,研究员

学科类别:
地球化学

研究方向:
宇宙成因核素在地球科学中的应用

职务:


社会任职:


承担科研项目情况:
中国科学院战略性先导科技专项(B类):2012-2017,长江上游地区河流改道历史(子课题)
国家自然科学基金面上项目:2012-2015,长江第一湾的形成及大渡河的演化:来自湖相和河流相沉积年代及物源的制约
国家自然科学基金面上项目:2007-2009,内蒙东乌旗石铁陨石的地球化学特征及其对中铁陨石成因的启示
国际合作交流项目(中澳科技合作特别基金):2006-2008,宇宙暴露年代学研究青藏高原湖泊的演化和长江阶地的形成年代
国家自然科学基金面上项目:2006-2008,青藏高原末次大湖期高湖面宇宙核素成因年代学研究
国家自然科学基金****基金:2002-2005,原地生成宇宙成因核素10Be和26Al在地貌演化中的应用


获奖及荣誉:
2005年获国务院政府特殊津贴

代表论著:
Kong P., Jia Jun, Zheng Yong, 2013. Cosmogenic 10Be/26Al burial dating of the Paleolithic at Xihoudu, North China. Journal of Human Evolution 64, 466-470.
Kong P., Zheng Y., Caffee M.W., 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry, Geophysics, Geosystems 13, Q06017, doi:10.1029/2012GC004140.
Kong P., Zheng Y., Fu B., 2011. Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin: Implications for Early Quaternary glaciations in east Tibet. Quaternary Geochronology 6, 304-312.
Kong P., Na C., Brown R., Fabel D., Freeman S., Xiao W., Wang Y., 2011. Cosmogenic 10Be and 26Al dating of paleolake shorelines in Tibet. J. Asian Earth Sci. 41, 263-273.
Kong P., Fink D., Na C., Xiao W., 2010. Dip-slip rate determined by cosmogenic surface dating on a Holocene scarp of the Daju fault, Yunnan, China. Tectonophysics 493, 106-112.
Kong P., Huang F., Liu X., Fink D., Ding L., Lai Q., 2010. Late Miocene ice sheet elevation in Grove Mountains, East Antarctica, inferred from cosmogenic 21Ne-10Be-26Al. Global Planet. Change 72, 50-54.
Kong P., Ding L., Lai Q., Huang F., 2010. Cosmogenic 21Ne concentrations and exposure ages of summit bedrocks in Grove Mountains, Antarctica. Sci. China 53 D, 518-521.
Kong P., Na C., Fink D., Zhao X., Xiao W., 2009. Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River. Quat. Sci. Rev. 28, 3224-3235.
Kong P., Fink D., Na C., Huang F., 2009. Late Quaternary glaciation of the Tianshan, Central Asia, using Cosmogenic 10Be surface exposure dating. Quat. Res. 72, 229-233.
Kong P., Granger D.E., Wu F., Caffee M.W., Wang Y., Zhao X., Zheng Y., 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: implications for evolution of the Middle Yangtze River. Earth Planet. Sci. Lett. 278, 131-141.
Kong P., Su W., Li X., Spettel B., Palme H., Tao K., 2008. Geochemistry and origin of metal, olivine clasts and matrix of Dongujimqin mesosiderite. Meteor. Planet. Sci. 43, 451-460.
Kong P., Fabel D., Brown R., Freeman S., 2007. Cosmic-ray exposure age of Martian meteorite GRV99027. Sci. China 50 D, 1521-1524.
Kong P., Na C., Fink D., Huang F., Ding L., 2007. Cosmogenic 10Be inferred lake-level changes in Sumxi Co Basin, Western Tibet. J. Asian Earth Sci. 29, 698-703.
Kong P., Na C., Fink D., Ding L., Huang F., 2007. Erosion in the northwest Tibet from in situ produced cosmogenic 10Be and 26Al in bedrocks. Earth Surf. Process. Landforms 32, 116-125.
Kong P., Xie X., 2003. Redistribution of elements in heavily shocked Yanzhuang chondrite. Meteor. Planet. Sci. 38, 739-746.
Kong P., Deloule E., Palme H., 2000. REE-bearing sulfide in Bishunpur, a highly unequilibrated ordinary chondrite. Earth Planet. Sci. Lett. 177, 1-7.
Kong P., Palme H., 1999. Compositional and genetic relationships between chondrules, chondrule rims, metal and matrix in the Renazzo chondrite. Geochim. Cosmochim. Acta 63, 3673-3682.
Kong P., Ebihara M., Palme H., 1999. Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation. Geochim. Cosmochim. Acta 63, 2637-2652.
Kong P., Ebihara M., Palme H., 1999. Siderophile elements in martian meteorites and implications for core formation in Mars. Geochim. Cosmochim. Acta 63, 1865-1875.
Kong P., Ebihara M., Xie X., 1998. Reevaluation of formation of metal nodules in ordinary chondrites. Meteor. Planet. Sci. 33, 993-998.
Kong P., Tadashi M., Ebihara M., 1997. Compositional continuity of enstatite chondrites and implications for heterogeneous accretion of the enstatite chondrite parent body. Geochim. Cosmochim. Acta 61, 4895-4914.
Kong P., Ebihara M., 1997. Reproducibility of elemental concentrations for JB-1, a GSJ rock reference sample, with special reference to Mo, W and Ta. Geochem. J. 31, 339-344.
Kong P., Ebihara M., 1997. The origin and nebular history of the metal phase of ordinary chondrites. Geochim. Cosmochim. Acta 61, 2317-2329.
Kong P., Ebihara M., Nakahara H., 1996. Determination of 18 siderophile elements including all platinum group elements in chondritic metals and iron meteorites by instrumental neutron activation. Anal. Chem. 68, 4130-4134.
Kong P., Ebihara M., 1996. Metal phases of L chondrites: Their formation and evolution in the nebula and in the parent body. Geochim. Cosmochim. Acta 60, 2667-2680.
Kong P., Ebihara M., 1996. Distribution of W and Mo in ordinary chondrites and implications for nebular and parent body thermal processes. Earth Planet. Sci. Lett. 137, 83-93.
Kong P., Ebihara M., Nakahara H., Endo K., 1995. Chemical characteristics of metal phases of the Richardton H5 chondrite. Earth Planet. Sci. Lett. 136, 407-419.
Kong P., Chai C.F., Mao X.Y., Ma S.L., 1991. Chemical species of iridium and other trace elements in the Cretaceous-Tertiary boundary clays and their implications. J. Radioanal. Nucl. Chem.151, 201-211.
Kong P., Chai C.F., 1990. A new selective chemical dissolution procedure for chemical speciation studies of anomalous iridium in geological samples. Chem. Geol. 82, 51-56.
Kong P., Chai C.F., 1989. A new quantitative radiochemical separation procedure to determine Ir at 10-12 g/g level in geological samples by a long chain primary amine extraction. J. Radioanal. Nucl. Chem. 130, 321-331.



相关话题/地质 地球