李庆1,,,
何仕松3,
刘原3
1.四川农业大学农学院 成都 611130
2.四川省农村经济综合信息中心 成都 610072
3.四川苍溪猕猴桃研究所 苍溪 628400
基金项目: 国家现代农业产业体系四川水果创新团队项目2013-2018
详细信息
作者简介:王茹琳, 主要研究方向为气候变化与植物、病虫害关系。E-mail:wrl_1986_1@163.com
通讯作者:李庆, 主要研究方向为病虫害生物防治。E-mail:liq8633@163.com
中图分类号:S601.9计量
文章访问数:1173
HTML全文浏览量:10
PDF下载量:1284
被引次数:0
出版历程
收稿日期:2017-06-16
录用日期:2017-07-12
刊出日期:2018-01-01
Potential distribution of Actinidia chinensis in China and its predicted response to climate change
WANG Rulin1, 2,,LI Qing1,,,
HE Shisong3,
LIU Yuan3
1. College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
2. Sichuan Provincial Rural Economic Information Center, Chengdu 610072, China
3. Kiwifruit Institute of Cangxi County, Cangxi 628400, China
Funds: the Sichuan Fruit Innovation Team Project of Modern Agricultural Industry Technology System of China2013-2018
More Information
Corresponding author:Li Qing, E-mail:liq8633@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:中华猕猴桃为中国特有果种,由于其独特的口感和较高的经济价值,近年来种植规模逐年扩大。在引种过程中,由于缺乏合理的布局规划和适生性分析,出现了品种单一化、易感病虫害等问题。近年来四川、陕西、贵州、重庆和湖北等猕猴桃主产省份相继开展了猕猴桃气候适宜性区划的研究,但目前的研究多未考虑未来气候变化对猕猴桃种植分布的影响,且伴随着气候变化的加剧,已有的研究结果已不能完全适应实际生产的需求。本文运用生态位模型软件MaxEnt,模拟和预测气候变化背景下大尺度范围中华猕猴桃适生区分布及其变化的可行性,以利于科学地优化产业结构、促进产业发展。基于当前数据和IPCC AR5提出的3种气候情景以及中华猕猴桃的分布信息,采用MaxEnt生态位模型和ArcGIS预测了中华猕猴桃的适生区及未来的变化趋势,用受试者工作特征曲线(receiver operating characteristic curve,ROC曲线)检测模型精度、刀切法(Jackknife test)筛选主导环境变量。结果表明,基于当前和未来情景构建的中华猕猴桃地理分布模型的AUC(area under curve)值均达到"极好"的标准,说明模型预测结果可用于本研究。当前气候条件下,中华猕猴桃的高适生区主要在四川、陕西、重庆、湖北、贵州、浙江、湖南、安徽、河南、江苏和甘肃等省份,面积达1.01×106 km2。中适生区则以高适生区为中心向外扩散,包括河南、湖北、安徽、江苏和山东等地,面积为6.79×105 km2。RCP2.6和RCP4.5排放情景下,中华猕猴桃高适生区的分布、面积及中心点位置都有所不同,面积均呈增加趋势;RCP8.5排放情景下,高适生区面积呈减少趋势。RCP4.5和RCP8.5排放情景下,中华猕猴桃高适生区中心点均有向北移动趋势。MaxEnt模型对未来气候变化条件下中华猕猴桃适生区的准确模拟与预测具有潜在应用价值,对该果树的气候适宜性区划具有重要指导意义。
关键词:中华猕猴桃/
MaxEnt模型/
环境变量/
气候变化/
适生区分析/
典型浓度路径情景
Abstract:Kiwifruit (Actinidia spp.), belonged to Actinidiaceae, is a type of perennial deciduous woody liana and an important class of berry fruit. With rich sugar, protein, amino acids, vitamins and especially high vitamin C content, the kiwifruit is known as "the king of the fruit" and has a good market prospect. A. chinensis is a species endemic in China with a fast-expanding planting area due to its unique subtle flavor and high economic value. Optimization of planting scale and distribution of the crop has been the major concern for regional planning. The objective of this study was to test and determine the possibility of using the MaxEnt (the maximum entropy) model to simulate and predict future large-scale distribution of A. chinensis. Based on current environmental factors, three future climate scenarios suggested in the IPCC fifth report and current distribution sites of A. chinensis, we used the MaxEnt model in combination with ArcGIS to predict the potential geographic distribution and trend of change of A. chinensis in China. The dominant factors were chosen by using the Jackknife test and the Receiver Operating Characteristic (ROC) curve was used to evaluate the simulation. The results showed that high value of area under curve (AUC) denoted good results which significantly differed from random predictions. Based on the evaluation criterion, the accuracies of the predictions of A. chinensis potential distribution in the current and future periods were excellent. The predicted result of the MaxEnt model was imported into ArcGIS10.0 for further analysis and showed that under present climatic conditions, the total suitable area was 26.92% of the total land area in China. The potential distribution was highly consistent with the locations of specimen records and field surveys. The highly suitable areas were in Sichuan, Shaanxi, Chongqing, Hubei, Guizhou, Zhejiang, Hunan, Anhui, Henan, Jiangsu and Gansu Provinces. The areas of highly suitable habitat in the main producing provinces were analyzed statistically. The results showed that under the current conditions, the most suitable area for A. chinensis cultivation was 1.01×106 km2, accounting for 38.94% of the total suitable areas. The moderately suitable areas were in Henan, Hubei, Anhui and Shandong Provinces, with the area of 6.79×105 km2, accounting for 26.26% of the total suitable areas. Comparison of future suitable areas with current suitable areas showed that areas of high suitability increased under scenarios RCP2.6 and RCP4.5, but decreased under scenario RCP8.5. Under scenarios RCP4.5 and RCP8.5, the mean center of highly suitable area of A. chinensis moved northward. The result showed that the MaxEnt model was highly reliable in determining not only the range of geographic distribution of A. chinensis, but also in identifying dominant environmental factors driving the geographic distribution. Whereas climate was a decisive factor in species distribution, change in distribution pattern of species was the most direct effect of climate change. The results provided a critical reference base for A. chinensis plantation pattern and countermeasures to cope with climate change in China.
Key words:Actinidia chinensis/
MaxEnt model/
Environmental variables/
Climate change/
Suitable area analysis/
Representative concentration pathway scenario
HTML全文

图1当前气候情景中华猕猴桃MaxEnt模型的ROC曲线
Figure1.ROC curve of MaxEnt model for Actinidia chinensis under current scenario


图2未来不同年代3种气候变化情景下中华猕猴桃MaxEnt模型的ROC曲线
Figure2.ROC curves of MaxEnt model for Actinidia chinensis under 3 climate change scenarios in the future decades


图3基于MaxEnt模型预测的中华猕猴桃在中国的适生分析图
Figure3.Potential distribution of Actinidia chinensis in China based on MaxEnt model


图4未来不同年代3种气候变化背景下中华猕猴桃潜在适生区的预测结果
Figure4.Predicted future suitable areas for Actinidia chinensis under 3 climate change scenarios in the future decades


图5未来不同年代3种气候变化情景下中华猕猴桃高适生区中心点迁移轨迹
Figure5.Variations of mean centers of highly suitable areas under different 3 climate change scenarios in the future decades

表1曲线下面积值(AUC值)取值范围及其与MaxEnt模型准确性的关系
Table1.Relationship between area under curve (AUC) and the accuracy of the MaxEnt model
AUC取值范围 Range of AUC value | 评价标准 Evaluation criterion |
0.5≤AUC < 0.6 | 失败?Fail |
0.6≤AUC < 0.7 | 较差?Poor |
0.7≤AUC < 0.8 | 一般?Fair |
0.8≤AUC < 0.9 | 好?Good |
0.9≤AUC < 1.0 | 极好?Excellent |

表2影响中华猕猴桃分布的22个环境变量及其代码和计量单位
Table2.Codes and units of environmental variables used for simulation of potential distribution of Actinidia chinensis
代码 Code | 变量名称 Environmental variable | 单位 Unit |
Bio2 | 平均日较差?Mean diurnal temperature range | ℃ |
Bio5 | 最暖月最高温度?Max temperature of the warmest month | ℃ |
Bio6 | 最冷月最低温度?Min temperature of the coldest month | ℃ |
Bio7 | 年均温变化范围?Annual temperature range | ℃ |
Bio9 | 最干季度平均温度?Mean temperature of the driest quarter | ℃ |
Bio11 | 最冷季度平均温度?Mean temperature of the coldest quarter | ℃ |
Bio12 | 年降水量?Annual precipitation | mm |
Bio14 | 最干月降水量?Precipitation of the driest month | mm |
Prec5, 9, 12 | 5、9和12月平均雨量?Precipitation in May, September and December | mm |
Tmax2, 4, 9, 10, 11, 12 | 2月、4月、9月、10月、11月和12月最高温度?Maximum temperature in February, April, September, October, November and December | ℃ |
Tmin3, 4, 10, 11 | 3月、4月、10月和11月最低温度?Minimum temperature in March, April, October, and November | ℃ |
Tmean5 | 5月平均温度?Mean temperature in May | ℃ |

表3中华猕猴桃在当前情景(1950—2000年)及未来气候条件下的适生区面积预测
Table3.Predicted suitable areas for Actinidia chinensis under current and future climatic conditions
年代Decade | 气候情景Climate scenarios | 低适生区Lowly suitable area | 中适生区Moderately suitable area | 高适生区Highly suitable area | |||||
预测面积Predicted area (×104km2) | 占当前情景预测面积比例Proportion of current predicted area (%) | 预测面积Predicted area (×104km2) | 占当前情景预测面积比例Proportion of current predicted area (%) | 预测面积Predicted area (×104km2) | 占当前情景预测面积比例Proportion of current predicted area (%) | ||||
当前(1950-2000年) Current (1950-2000) | - | 89.91 | - | 67.86 | - | 100.62 | - | ||
21世纪30年代 2030s | RCP2.6 | 91.77 | 102.07 | 70.39 | 103.37 | 108.84 | 108.18 | ||
RCP4.5 | 101.27 | 112.64 | 86.81 | 127.92 | 86.89 | 86.36 | |||
RCP8.5 | 122.19 | 135.90 | 62.01 | 91.38 | 106.94 | 106.29 | |||
21世纪50年代 2050s | RCP2.6 | 102.34 | 113.83 | 66.93 | 98.62 | 108.43 | 107.77 | ||
RCP4.5 | 93.77 | 104.29 | 59.29 | 87.37 | 116.97 | 116.25 | |||
RCP8.5 | 112.79 | 125.44 | 65.02 | 95.82 | 110.06 | 109.39 | |||
21世纪70年代 2070s | RCP2.6 | 45.85 | - | 75.87 | 111.81 | 113.10 | 112.41 | ||
RCP4.5 | 111.01 | 123.55 | 79.71 | 117.15 | 108.49 | 107.83 | |||
RCP8.5 | 120.82 | 134.38 | 58.53 | 86.24 | 122.72 | 121.96 | |||
21世纪80年代 2080s | RCP2.6 | 89.82 | 99.91 | 81.41 | 119.96 | 108.28 | 107.62 | ||
RCP4.5 | 80.19 | 89.19 | 68.21 | 100.52 | 148.29 | 148.37 | |||
RCP8.5 | 100.49 | 111.77 | 80.21 | 118.19 | 109.38 | 108.70 |

表4未来3种气候变化情景下中华猕猴桃高适生区中心点位移距离和方向
Table4.Shift distance and direction of mean center of highly suitable area of Actinidia chinensis under 3 climate change scenarios in the future
时期 Period | RCP2.6气候情景 SRES-RCP2.6 | RCP4.5气候情景 SRES-RCP4.5 | RCP8.5气候情景 SRES-RCP8.5 | ||||||||
位移 Displacement (km) | 方向 Direction | 角度 Angle (°) | 位移 Displacement (km) | 方向 Direction | 角度 Angle (°) | 位移 Displacement (km) | 方向 Direction | 角度 Angle (°) | |||
当前至2030s From current to 2030s | 108.84 | 东南 Southeast | 279.20 | 9.68 | 东南 Southeast | 290.23 | 106.56 | 东北 Northeast | 66.37 | ||
2030s至2050s From 2030s to 2050s | 58.65 | 西北 Northwest | 94.87 | 47.70 | 东南 Southeast | 344.09 | 73.01 | 西南 Southeast | 265.52 | ||
2050s至2070s From 2050s to 2070s | 60.54 | 东北 Northeast | 31.19 | 33.70 | 东北 Northeast | 32.51 | 88.50 | 西北 Northwest | 97.14 | ||
2070s至2080s From 2070s to 2080s | 62.73 | 东南 Southeast | 357.39 | 74.00 | 西北 Northwest | 132.39 | 92.80 | 东南 Southeast | 281.38 | ||
当前至2080s From current to 2080s | 82.39 | 东南 Southeast | 316.83 | 32.44 | 西北 Northwest | 153.71 | 40.82 | 东北 Northeast | 43.31 |

表5气候变化情景下未来不同年代中国年平均气温与年降水量的变化
Table5.Changes in annual mean temperature and annual precipitation under different climate change scenarios in the future decades in China
气候变化情景 Climate change scenario | 年代 Decades | 年平均气温范围 Range of annual mean temperature (℃) | 年平均气温 Annual mean temperature (℃) | 年降水量范围 Range of annual precipitation (mm) | 年降水量 Annual precipitation (mm) |
当前?Current | 1950-2000 | -13.8~25.8 | 6.15 | 12~4 199 | 621.59 |
RCP2.6气候情景 SRES-RCP2.6 | 2030s | -18.2~27.1 | 6.68 | 16~5 062 | 824.16 |
2050s | -17.7~27.3 | 6.94 | 18~5 149 | 857.32 | |
2070s | -17.6~27.4 | 6.89 | 22~5 155 | 849.40 | |
2080s | -17.9~27.3 | 6.79 | 22~5 101 | 845.79 | |
RCP4.5气候情景 SRES-RCP4.5 | 2030s | -18.0~27.2 | 6.73 | 16~5 086 | 822.52 |
2050s | -17.1~27.6 | 7.28 | 19~5 201 | 849.65 | |
2070s | -16.6~27.8 | 7.74 | 22~5 155 | 858.04 | |
2080s | -16.4~27.9 | 7.69 | 21~5 143 | 859.39 | |
RCP8.5气候情景 SRES-RCP8.5 | 2030s | -17.5~27.4 | 11.92 | 21~5 054 | 819.23 |
2050s | -16.4~27.9 | 11.65 | 21~5 149 | 858.42 | |
2070s | -14.4~29.0 | 11.49 | 27~5 261 | 2 024.12 | |
2080s | -13.4~29.4 | 11.99 | 29~5 286 | 2 075.86 |

参考文献
[1] | 吴建国, 吕佳佳, 艾丽.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报, 2009, 18(2):693-703 http://www.docin.com/p-718208565.html WU J G, LYU J J, AI L. The impacts of climate change on the biodiversity:Vulnerability and adaptation[J]. Ecology and Environmental Sciences, 2009, 18(2):693-703 http://www.docin.com/p-718208565.html |
[2] | 李勇, 杨晓光, 王文峰, 等.全球气候变暖对中国种植制度可能影响Ⅴ.气候变暖对中国热带作物种植北界和寒害风险的影响分析[J].中国农业科学, 2010, 43(12):2477-2484 doi: 10.3864/j.issn.0578-1752.2010.12.011 LI Y, YANG X G, WANG W F, et al. The possible effects of global warming on cropping systems in China Ⅴ. The possible effects of climate warming on geographical shift in safe northern limit of tropical crops and the risk analysis of cold damage in China[J]. Scientia Agricultura Sinica, 2010, 43(12):2477-2484 doi: 10.3864/j.issn.0578-1752.2010.12.011 |
[3] | 邓振镛, 张强, 宁惠芳, 等.西北地区气候暖干化对作物气候生态适应性的影响[J].中国沙漠, 2010, 30(3):633-639 http://www.cqvip.com/QK/90772X/201022/36000168.html DENG Z Y, ZHANG Q, NING H F, et al. Influence of climate warming and drying on crop eco-climate adaptability in Northwestern China[J]. Journal of Desert Research, 2010, 30(3):633-639 http://www.cqvip.com/QK/90772X/201022/36000168.html |
[4] | 王晓煜, 杨晓光, 孙爽, 等.气候变化背景下东北三省主要粮食作物产量潜力及资源利用效率比较[J].应用生态学报, 2015, 26(10):3091-3102 http://www.cqvip.com/QK/90626A/201510/666246437.html WANG X Y, YANG X G, SUN S, et al. Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change[J]. Chinese Journal of Applied Ecology, 2015, 26(10):3091-3102 http://www.cqvip.com/QK/90626A/201510/666246437.html |
[5] | ANDERSON R P, RAZA A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution:Preliminary tests with montane rodents (genus Nephelomys) in Venezuela[J]. Journal of Biogeography, 2010, 37(7):1378-1393 doi: 10.1111/jbi.2010.37.issue-7 |
[6] | 朱耿平, 刘国卿, 卜文俊, 等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性, 2013, 21(1):90-98 http://edu.wanfangdata.com.cn/Periodical/Detail/swdyx201301012 ZHU G P, LIU G Q, BU W J, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98 http://edu.wanfangdata.com.cn/Periodical/Detail/swdyx201301012 |
[7] | 许仲林, 彭焕华, 彭守璋.物种分布模型的发展及评价方法[J].生态学报, 2015, 35(2):557-567 http://www.cnki.com.cn/Article/CJFDTotal-STXB201502037.htm XU Z L, PENG H H, PENG S Z. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015, 35(2):557-567 http://www.cnki.com.cn/Article/CJFDTotal-STXB201502037.htm |
[8] | 李国庆, 刘长成, 刘玉国, 等.物种分布模型理论研究进展[J].生态学报, 2013, 33(16):4827-4835 http://www.oalib.com/paper/5088179 LI G Q, LIU C C, LIU Y G, et al. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16):4827-4835 http://www.oalib.com/paper/5088179 |
[9] | 段居琦, 周广胜.中国水稻潜在分布及其气候特征[J].生态学报, 2011, 31(22):6659-6668 http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201103030257&flag=1 DUAN J Q, ZHOU G S. Potential distribution of rice in china and its climate characteristics[J]. Acta Ecologica Sinica, 2011, 31(22):6659-6668 http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201103030257&flag=1 |
[10] | 何奇瑾, 周广胜.我国春玉米潜在种植分布区的气候适宜性[J].生态学报, 2012, 32(12):3931-3939 http://www.cnki.com.cn/Article/CJFDTotal-BJNY201509204.htm HE Q J, ZHOU G S. Climatic suitability of potential spring maize cultivation distribution in China[J]. Acta Ecologica Sinica, 2012, 32(12):3931-3939 http://www.cnki.com.cn/Article/CJFDTotal-BJNY201509204.htm |
[11] | 孙敬松, 周广胜.利用最大熵法(MaxEnt)模拟中国冬小麦分布区的年代际动态变化[J].中国农业气象, 2012, 33(4):481-487 doi: 10.3969/j.issn.1000-6362.2012.04.002 SUN J S, ZHOU G S. Inter-decadal variability of winter wheat planting zone in China during 1961 to 2010 simulated by maximum entropy (MaxEnt)[J]. Chinese Journal of Agrometeorology, 2012, 33(4):481-487 doi: 10.3969/j.issn.1000-6362.2012.04.002 |
[12] | 黄宏文, 龚俊杰, 王圣梅, 等.猕猴桃属(Actinidia)植物的遗传多样性[J].生物多样性, 2000, 8(1):1-12 http://www.doc88.com/p-3147462105281.html HUANG H W, GONG J J, WANG S M, et al. Genetic diversity in the genus Actinidia[J]. Chinese Biodiversity, 2000, 8(1):1-12 http://www.doc88.com/p-3147462105281.html |
[13] | 徐小彪, 张秋明.中国猕猴桃种质资源的研究与利用[J].植物学通报, 2003, 20(6):648-655 http://www.doc88.com/p-38734123353.html XU X B, ZHANG Q M. Researches and utilizations of germplasm resource of kiwifruit in China[J]. Chinese Bulletin of Botany, 2003, 20(6):648-655 http://www.doc88.com/p-38734123353.html |
[14] | 刘瑶, 朱天辉, 樊芳冰, 等.四川猕猴桃溃疡病的发生与病原研究[J].湖北农业科学, 2013, 52(20):4937-4942 http://www.doc88.com/p-0582022046175.html LIU Y, ZHU T H, FAN F B, et al. Occurrence and pathogen identification of kiwifruit bacterial canker in Sichuan[J]. Hubei Agricultural Sciences, 2013, 52(20):4937-4942 http://www.doc88.com/p-0582022046175.html |
[15] | 涂美艳, 江国良, 陈栋, 等.四川省猕猴桃产业发展现状及对策[J].湖北农业科学, 2012, 51(10):1945-1949 doi: 10.3969/j.issn.0439-8114.2012.10.001 TU M Y, JIANG G L, CHEN D, et al. Development status and countermeasures of kiwifruit industry in Sichuan Province[J]. Hubei Agricultural Sciences, 2012, 51(10):1945-1949 doi: 10.3969/j.issn.0439-8114.2012.10.001 |
[16] | 于成, 叶丽君, 刘泽全, 等.都江堰市海沃特猕猴桃种植的气候适应性区划[J].安徽农业科学, 2010, 38(11):5741-5743 http://www.docin.com/p-775354192.html YU C, YE L J, LIU Z Q, et al. Climate adaptability division of Actinidia deliciosa cv. Hayward in Dujiangyan[J]. Journal of Anhui Agricultural Sciences, 2010, 38(11):5741-5743 http://www.docin.com/p-775354192.html |
[17] | 贺文丽, 李星敏, 朱琳, 等.基于GIS的关中猕猴桃气候生态适宜性区划[J].中国农学通报, 2011, 27(22):202-207 http://www.doc88.com/p-3018096480533.html HE W L, LI X M, ZHU L, et al. Climate ecological applicability regionalization for kiwifruit based on GIS in Guanzhong of Shaanxi Province[J]. Chinese Agricultural Science Bulletin, 2011, 27(22):202-207 http://www.doc88.com/p-3018096480533.html |
[18] | 莫建国, 池再香, 汤苾, 等.贵州山区红心猕猴桃种植气候区划[J].中国农业气象, 2016, 37(1):36-42 http://www.doc88.com/p-2072378208060.html MO J G, CHI Z X, TANG B, et al. Climate suitability for red cartridge kiwifruit planting in Guizhou mountainous area[J]. Chinese Journal of Agrometeorology, 2016, 37(1):36-42 http://www.doc88.com/p-2072378208060.html |
[19] | 曾永美, 高阳华, 杨世琦.基于GIS的重庆市万盛区猕猴桃气候区划分析[J].重庆师范大学学报:自然科学版, 2012, 29(2):89-93 http://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201202021.htm ZENG Y M, GAO Y H, YANG S Q. The kiwifruit climate division analysis of Chongqing Wansheng District that based on geographic information system[J]. Journal of Chongqing Normal University:Natural Science Edition, 2012, 29(2):89-93 http://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201202021.htm |
[20] | 刘敏, 刘云鹏, 刘宗芳, 等.夷陵区野生猕猴桃生态气候适应性及其区划[J].湖北气象, 2003, (2):18-20 http://www.cqvip.com/qk/98113X/200302 LIU M, LIU Y P, LIU Z F, et al. Wild Chinese gooseberry ecologic climatization in Yi-Ling County and its region division[J]. Meteorology Journal of Hubei, 2003, (2):18-20 http://www.cqvip.com/qk/98113X/200302 |
[21] | HA H, HEUMANN B W, LIESCH M, et al. Modelling potential conservation easement locations using physical and socio-economic factors:A case-study from south-east Michigan[J]. Applied Geography, 2016, 75:104-115 doi: 10.1016/j.apgeog.2016.08.009 |
[22] | 郭杰, 刘小平, 张琴, 等.基于MaxEnt模型的党参全球潜在分布区预测[J].应用生态学报, 2017, 28(3):992-1000 http://www.cjae.net/CN/article/downloadArticleFile.do?attachType=PDF&id=20965 GUO J, LIU X P, ZHANG Q, et al. Prediction for the potential distribution area of Codonopsis pilosula at global scale based on MaxEnt model[J]. Chinese Journal of Applied Ecology, 2017, 28(3):992-1000 http://www.cjae.net/CN/article/downloadArticleFile.do?attachType=PDF&id=20965 |
[23] | 张天蛟, 刘刚.提高生态位模型时间转移能力的方法研究[J].中国农业大学学报, 2017, 22(2):98-105 http://d.wanfangdata.com.cn/Periodical/zgnydxxb201702012 ZHANG T J, LIU G. Study of methods to improve the temporal transferability of niche model[J]. Journal of China Agricultural University, 2017, 22(2):98-105 http://d.wanfangdata.com.cn/Periodical/zgnydxxb201702012 |
[24] | 曹学仁, 陈林, 周益林, 等.基于MaxEnt的麦瘟病在全球及中国的潜在分布区预测[J].植物保护, 2011, 37(3):80-83 http://www.doc88.com/p-9724153509371.html CAO X R, CHEN L, ZHOU Y L, et al. Potential distribution of Magnaporthe grisea in China and the world, predicted by MaxEnt[J]. Plant Protection, 2011, 37(3):80-83 http://www.doc88.com/p-9724153509371.html |
[25] | 闫冠华, 李巧萍, 邢超.不同温室气体排放情景下未来中国地面气温变化特征[J].南京信息工程大学学报:自然科学版, 2011, 3(1):36-46 doi: 10.3969/j.issn.1674-7070.2011.01.004 YAN G H, LI Q P, XING C. Future surface air temperature changes in China under different greenhouse gas emission scenarios[J]. Journal of Nanjing University of Information Science and Technology:Natural Science Edition, 2011, 3(1):36-46 doi: 10.3969/j.issn.1674-7070.2011.01.004 |
[26] | 张晓华, 高云, 祁悦, 等. IPCC第五次评估报告第一工作组主要结论对《联合国气候变化框架公约》进程的影响分析[J].气候变化研究进展, 2014, 10(1):14-19 http://mall.cnki.net/magazine/Article/QHBH201401003.htm ZHANG X H, GAO Y, QI Y, et al. Implications of the findings from the working group Ⅰ contribution to the IPCC fifth assessment report on the UNFCCC process[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(1):14-19 http://mall.cnki.net/magazine/Article/QHBH201401003.htm |
[27] | 王雷宏, 杨俊仙, 徐小牛.基于MaxEnt分析金钱松适生的生物气候特征[J].林业科学, 2015, 51(1):127-131 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lykx201501015 WANG L H, YANG J X, XU X N. Analysis of suitable bioclimatic characteristics of Pseudolarix amabilis by using MaxEnt model[J]. Scientia Silvae Sinicae, 2015, 51(1):127-131 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lykx201501015 |
[28] | 王运生, 谢丙炎, 万方浩. ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性, 2007, 15(4):365-372 http://www.docin.com/p-882610058.html WANG Y S, XIE B Y, WAN F H. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372 http://www.docin.com/p-882610058.html |
[29] | 赵力, 朱耿平, 李敏, 等.入侵害虫西部喙缘蝽和红肩美姬缘蝽在中国的潜在分布[J].天津师范大学学报:自然科学版, 2015, 35(1):75-78 http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_tjsdxb201501015 ZHAO L, ZHU G P, LI M, et al. Potential distribution of Leptoglossus occidentalis and Jadera haematoloma in Chi-na[J]. Journal of Tianjin Normal University:Natural Science Edition, 2015, 35(1):75-78 http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_tjsdxb201501015 |
[30] | 赵文娟, 陈林, 丁克坚, 等.利用MaxEnt预测玉米霜霉病在中国的适生区[J].植物保护, 2009, 35(2):32-38 http://d.wanfangdata.com.cn/Thesis/Y1597541 ZHAO W J, CHEN L, DING K J, et al. Prediction of potential geographic distribution areas of the maize downy mildew in China by using MaxEnt[J]. Plant Protection, 2009, 35(2):32-38 http://d.wanfangdata.com.cn/Thesis/Y1597541 |
[31] | 韩乐琼, 韩哲, 李双林.不同代表性浓度路径(RCPs)下21世纪长江中下游强降水预估[J].大气科学学报, 2014, 37(5):529-540 http://www.docin.com/p-1484475943.html HAN L Q, HAN Z, LI S L. Projection of heavy rainfall events in the middle and lower reaches of the Yangtze River valley in the 21st century under different representative concentration pathways[J]. Transactions of Atmospheric Sciences, 2014, 37(5):529-540 http://www.docin.com/p-1484475943.html |
[32] | 赵泽芳, 卫海燕, 郭彦龙, 等.人参潜在地理分布以及气候变化对其影响预测[J].应用生态学报, 2016, 27(11):3607-3615 http://www.cjae.net/CN/abstract/abstract21148.shtml ZHAO Z F, WEI H Y, GUO Y L, et al. Potential distribution of Panax ginseng and its predicted responses to climate change[J]. Chinese Journal of Applied Ecology, 2016, 27(11):3607-3615 http://www.cjae.net/CN/abstract/abstract21148.shtml |
[33] | YUE T X, FAN Z M, CHEN C F, et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios[J]. Ecological Modelling, 2011, 222(14):2342-2361 doi: 10.1016/j.ecolmodel.2010.11.026 |
[34] | 陈新美, 雷渊才, 张雄清, 等.样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J].林业科学, 2012, 48(1):53-59 doi: 10.11707/j.1001-7488.20120110 CHEN X M, LEI Y C, ZHANG X Q, et al. Effects of sample sizes on accuracy and stability of maximum entropy model in predicting species distribution[J]. Scientia Silvae Sinicae, 2012, 48(1):53-59 doi: 10.11707/j.1001-7488.20120110 |
[35] | 朱耿平, 刘强, 高玉葆.提高生态位模型转移能力来模拟入侵物种的潜在分布[J].生物多样性, 2014, 22(2):223-230 http://www.oalib.com/paper/4969674 ZHU G P, LIU Q, GAO Y B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species[J]. Biodiversity Science, 2014, 22(2):223-230 http://www.oalib.com/paper/4969674 |
[36] | WORTHINGTON T A, ZHANG T J, LOGUE D R, et al. Landscape and flow metrics affecting the distribution of a federally-threatened fish:Improving management, model fit, and model transferability[J]. Ecological Modelling, 2016, 342:1-18 doi: 10.1016/j.ecolmodel.2016.09.016 |
[37] | 蔡静芸, 张明明, 粟海军, 等.生态位模型在物种生境选择中的应用研究[J].经济动物学报, 2014, 18(1):47-52 http://d.wanfangdata.com.cn/Periodical/jjdwxb201401012 CAI J Y, ZHANG M M, SU H J, et al. Application of ecological niche models for selection of species habitat[J]. Journal of Economic Animal, 2014, 18(1):47-52 http://d.wanfangdata.com.cn/Periodical/jjdwxb201401012 |
[38] | 韩阳阳, 王焱, 项杨, 等.基于MaxEnt生态位模型的松材线虫在中国的适生区预测分析[J].南京林业大学学报:自然科学版, 2015, 39(1):6-10 http://www.cnki.com.cn/Article/CJFDTotal-NJLY201501002.htm HAN Y Y, WANG Y, XIANG Y, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on MaxEnt ecological niche model[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2015, 39(1):6-10 http://www.cnki.com.cn/Article/CJFDTotal-NJLY201501002.htm |
[39] | 康传志, 周涛, 郭兰萍, 等.全国栽培太子参生态适宜性区划分析[J].生态学报, 2016, 36(10):2934-2944 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb201610017 KANG C Z, ZHOU T, GUO L P, et al. Ecological suitability and regionalization of Pseudostellaria heterophylla (Miq.) Pax ex Pax et Hoffm. in China[J]. Acta Ecologica Sinica, 2016, 36(10):2934-2944 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb201610017 |
[40] | 张杰, 敖子强, 吴永明, 等.中华猕猴桃(Actinidia chinensis)在中国的适生性及其潜在地理分布模拟预测[J].热带地理, 2017, 37(2):218-225 http://www.doc88.com/p-2079645106705.html ZHANG J, AO Z Q, WU Y M, et al. Prediction of potential geographic distribution of Actinidia chinensis in China based on maximum entropy niche model and ArcGIS[J]. Tropical Geography, 2017, 37(2):218-225 http://www.doc88.com/p-2079645106705.html |
[41] | 乔慧捷, 胡军华, 黄继红.生态位模型的理论基础、发展方向与挑战[J].中国科学:生命科学, 2013, 43(11):915-927 https://www.researchgate.net/profile/Junhua_Hu/publication/270462657_Theoretical_Basis_Future_Directions_and_Challenges_for_Ecological_Niche_Models/links/55b71d1f08aed621de044be9.pdf?origin=publication_detail QIAO H J, HU J H, HUANG J H. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica Vitae, 2013, 43(11):915-927 https://www.researchgate.net/profile/Junhua_Hu/publication/270462657_Theoretical_Basis_Future_Directions_and_Challenges_for_Ecological_Niche_Models/links/55b71d1f08aed621de044be9.pdf?origin=publication_detail |
[42] | 杨妙贤, 肖德兴, 梁红, 等.中华猕猴桃性别分化的细胞形态学观察[J].园艺学报, 2011, 38(2):257-264 http://www.cnki.com.cn/Article/CJFDTotal-ZNJX201104003.htm YANG M X, XIAO D X, LIANG H, et al. Cytomorphological observation on sex differentiation of Actinidia chinensis[J]. Acta Horticulturae Sinica, 2011, 38(2):257-264 http://www.cnki.com.cn/Article/CJFDTotal-ZNJX201104003.htm |
[43] | 任丹, 漆雁斌, 于伟咏, 等.农户机械使用程度及其影响因素研究——基于四川省205户猕猴桃种植户的调查[J].四川农业大学学报, 2016, 34(4):528-534 http://www.wenkuxiazai.com/doc/da84f3baf111f18583d05ace.html REN D, QI Y B, YU W Y, et al. Research on the degree of use and the influencing factors of farmers' machinery-based on the survey of 205 households of kiwifruit farmers in Sichuan Province[J]. Journal of Sichuan Agricultural University, 2016, 34(4):528-534 http://www.wenkuxiazai.com/doc/da84f3baf111f18583d05ace.html |