基因组测序及解析以及新技术的广泛应用,让人们继续探索着丝粒和端粒等染色体上高度重复区域在生命活动中的新功能。植物着丝粒含有丰富的重复序列,如串联重复序列(Satellite)和反转座子(Retrotransposon),参与基因组空间构象和细胞分裂等重要的生物学功能。然而不同物种双着丝粒染色体和新着丝粒染色体的不断发现,说明着丝粒区域大量的重复序列既不是其功能的充分条件也不是必要条件(Birchler and Han 2018; Liu et al., 2015)。因此我们一直想知道着丝粒这些特异的重复序列在着丝粒功能和结构维持中发挥的作用以及着丝粒在失去活性和产生活性等过程的遗传机制。
中国科学院遗传与发育生物学研究所韩方普研究组利用玉米为材料,利用着丝粒特异表观标记CENH3-RIP技术建立玉米着丝粒RNA文库并通过高通量测序以及克隆筛选等方法,意外发现来自玉米着丝粒特异反转座子序列CRM1通过反式剪切(Back splicing)的方式产生环RNA(图1)。研究人员进一步通过分子生物学(Divergent primers PCR、Northern等)、基因组学和生物影像观察(原子力显微镜)等方法证实重复序列来源的环状RNA位于着丝粒区域。功能研究发现CRM1来源的环RNA通过R-loop结构结合在着丝粒区域,并影响着丝粒区域高级染色质结构,遗传学的结果显示环RNA水平的降低能够影响CENH3核小体的定位。这些结果说明重复序列在着丝粒空间构象的维持和功能的发挥中发挥重要的作用(图2)。
图1: 玉米着丝粒反转座子CRM1产生的环形RNA
韩方普研究组通过植物原生质体瞬时转化进行反式剪切体外实验,证实反转座子序列发生的反式剪切过程在含有大量反转座子的植物中发现(玉米,小麦,燕麦,高粱和大豆),然而在拟南芥和哺乳动物细胞系中没有发现。小麦非编码RNA数据也证实重复序列来源的环RNA在体内也真实存在,这些结果说明反转座子反式剪切的过程非常保守。植物尤其是玉米、小麦等作物的基因组包含大量的反转座子序列,这为后续研究重复序列在植物基因组进化以及染色质结构中的功能提供了一个新的角度。
图2 : CRM1产生的环RNA在着丝粒空间构象和功能维持中作用
该论文于2020年1月29日在线发表于PLOS Biology(DO1:10.1371/journal.pbio.3000582),韩方普研究组已毕业博士研究生刘亚林和苏汉东为该文章的共同第一作者,韩方普研究员为通讯作者。本项工作得到遗传发育所曹晓风实验室、生物物理所李国红和俞洋实验室在RNA功能分析的帮助,遗传发育所黄勋和丁梅实验室在动物细胞系验证RNA剪切,物理所李伟实验室帮助完成原子力显微镜观察环RNA的实验。该研究得到国家自然科学基金重点国际合作项目的资助。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
韩方普研究组在植物着丝粒研究取得重要进展
本站小编 Free考研/2020-05-26
相关话题/序列 植物
谢旗研究组发表“植物内质网相关蛋白质降解(ERAD)机制”的重要综述
植物在整个生活史中面临多种非生物和生物胁迫,一直以来科学家对于植物如何响应环境胁迫并协调生长发育和胁迫响应之间的关系进行着系统而深入的研究。蛋白质泛素化修饰是一种重要的蛋白质翻译后修饰,主要通过影响蛋白稳定性、活性、亚细胞定位及蛋白之间的相互作用等在植物生长发育和适应各种环境的过程中发挥重要功能。 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组发表文章详细介绍基因组编辑调控植物内源基因翻译效率的实验流程
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显著提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关成果于2018年发表在Nature ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26韩方普研究组在植物着丝粒研究取得进展
植物着丝粒结构非常复杂,含有大量重复序列。非常难以进行着丝粒区的测序及其功能解析。着丝粒区的组蛋白发生变异,部分H3组蛋白被H3变异体(植物中称为CENH3,人类中称为CENPA)替代,CENH3也是着丝粒区的功能分子标记。植物着丝粒区的组蛋白H3核小体部分被CENH3核小体取代,但在有丝分裂前期及 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26王国栋研究组发现参与植物赤霉素代谢的新成员
赤霉素(gibberellins,GAs)是一类非常重要的植物激素,参与许多植物生长发育等多个生物学过程。在开花植物中,13-羟化赤霉素(生理活性低,例如GA1)和13-氢赤霉素(生理活性高,例如GA4)经常是同时存在的。到目前为止,人们只是在水稻中鉴定到催化赤霉素13-羟化反应的P450酶(CYP ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组应邀在New Phytologist杂志撰写Tansley Insight阐述植物氮磷互作机制
氮和磷是植物体内最丰富的两种矿质营养元素,也是促进作物产量提高的主要肥料成分。氮磷的协调利用是维持植物最佳生长和实现作物最大产量的关键。长期以来,人们对氮磷信号通路的解析大多分开进行,从而导致对氮磷互作机制的理解非常有限。 中国科学院遗传与发育生物学研究所储成才研究组胡斌副研究员的前期研究发现,水 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26周奕华研究组在植物细胞扩展与细胞壁加厚协同调控研究中取得新进展
植物为膨压驱动的可塑性固着生长模式。植物的生命活动取决于细胞的分化、增殖、生长和成熟等过程。细胞壁作为植物细胞特征性结构,参与了植物生命活动的众多方面,尤其在细胞形态与功能决定方面发挥重要作用。植物细胞生长包括细胞扩展和细胞壁加固两个过程。细胞扩展需要松驰细胞壁,而细胞扩展过程中细胞壁需要加固以维持 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26程祝宽研究组在植物减数分裂纺锤体组装研究中取得新进展
减数分裂过程中,纺锤体组装对于同源染色体间的正确分离极其重要。但是,不同物种间纺锤体组装的机制并不保守。在小鼠、果蝇和爪蟾等模式动物中,由中心体或者染色体本身介导的纺锤体组装,其细胞学过程的了解已经比较清楚。然而对于植物性母细胞减数分裂过程中,纺锤体的组装和细胞极性形成的认识还十分缺乏。 中国科学 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26谢旗研究组发表“泛素化修饰调控植物低磷胁迫响应”的重要综述
磷是植物生长发育必需的大量元素之一,土壤中低磷胁迫会影响植物的生长并影响作物的产量。我国是世界上磷肥使用量最大的国家,施用磷肥在提高作物产量的同时也带来了一系列环境污染问题。因此,解析植物对低磷胁迫的响应机制并培育磷高效利用的作物是作物育种上的一个重要研究方向。 泛素化修饰是一种重要的蛋白质翻译后 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26吕东平研究组和生物物理所王志珍团队合作在植物蛋白质氧化折叠研究中取得进展
二硫键的形成对于真核生物的分泌蛋白和质膜蛋白在内质网中的折叠至关重要。在动物和酵母中,内质网氧化还原蛋白oxidoreductin-1 (Ero1) 是二硫键的主要供体。但是,植物Ero1在蛋白质二硫键形成过程中作用机制还不清楚。 中国科学院遗传与发育生物学研究所农业资源研究中心吕东平研究组与中国 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26白洋研究组与John Innes Centre合作揭示拟南芥三萜化合物对植物根系微生物组的调控规律
植物不可移动,但在自然土壤中进化出了强大的适应能力,在根系招募大量且种属特异的大量且种类繁多的微生物(根系微生物组)。这些微生物参与植物吸收营养、抵抗疾病和非生物胁迫等重要生理过程。植物调控根系微生物组的机制对植物生长和健康非常重要,也是根系微生物组领域的研究热点。植物将20 ~ 30%光合作用产物 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26