含有核苷酸结合结构域和富含亮氨酸重复序列的蛋白,即NLR(nucleotide-binding leucine-rich repeat)蛋白是动植物中广泛存在的一大类免疫受体蛋白。NLR类受体通常通过识别病原菌的一些特定效应蛋白来触发小种特异性免疫反应,即ETI(effector-triggered immunity,效应因子触发的免疫反应)。迄今发现的多个NLR蛋白功能获得性(gain-of-function)突变均能触发类似ETI的抗病反应,引起组成性的细胞程序性死亡。
近日,中国科学院遗传与发育生物学研究所储成才研究组及中国水稻所钱前研究组合作报道了一个较为罕见的NLR蛋白突变wed(weaker defense)。该突变导致水稻对大多数白叶枯病病原小种的感病性增强。而这一表型在某些遗传组合中表现为显性,在某些组合中则表现为隐性。基因克隆发现wed引起了一个新的水稻NLR蛋白上核苷酸结合结构域中一个苯丙氨酸突变成亮氨酸。对203份水稻微核心种质进行基因分析表明,WED基因存在自然变异,其中84.7%的水稻中缺失该基因。对应遗传分析表明wed对野生型的WED位点表现为隐性(或弱效应的不完全显性),而对自然的缺失等位表现为完全显性。通过对基因干涉突变体、正反互补转基因株系、以及回复突变体的综合分析证明,wed实质上是一个NLR蛋白的功能获得性突变。这与已有报道的NLR蛋白的功能获得性突变均触发自主免疫反应的现象截然相反,表明水稻中可能存在一种新的NLR类蛋白的作用模式或调节机制。也暗示自然界中可能存在这样一种潜在的感病机制,即特定生理小种可能通过行使类似wed突变的致病效果来修饰特定NLR蛋白,进而对多个抗病信号途径进行抑制,最终导致植物致病性。
白叶枯病是水稻三大传统病害之一,迄今已在不同水稻品种中鉴定到多个白叶枯病抗病蛋白。由于这些抗病蛋白在结构上存在多样性,不同类型抗病蛋白介导的抗病机制没有明确的交互现象,使得人们一直以来认为水稻中存在多样性的抗病蛋白介导的白叶枯病抗病信号途径。有意思的是, NLR蛋白突变wed不仅破坏了水稻对白叶枯病的基本抗性,即PTI(PAMP-triggered immunity,病原相关分子模式触发的免疫反应),也在不同程度上抑制了至少三种类型抗病蛋白:Xa3/Xa26-,Xa4-及Xa21-介导的抗病性。这一发现首次明确了水稻中不同类型的白叶枯病抗病信号途径间存在共同的调控机制。
通过对水杨酸含量的测定,该研究同时揭示了wed的感病性伴随着水杨酸含量的升高以及水杨酸信号节点基因NPR1的表达下调,这与拟南芥中报道的水杨酸作为抗病信号分子正调控NPR1的表达以及拟南芥的抗病性相反。暗示了水稻中可能存在水杨酸合成的反馈调控机制。此外,研究人员通过一系列的机制分析,排除了已知抗病相关蛋白RAR1,OsRac1,以及PhyB对WED功能的影响,也进一步证明了WED介导的水稻抗病信号途径具有显著的特殊性(图)。
该项研究成果于2019年8月20日在线发表于Plant Physiology(DOI:10.1104/pp.19.00686)杂志上。储成才研究组唐九友副研究员为第一作者,储成才研究员和钱前研究员为共同通讯作者。该研究获得了国家自然科学基金(31571248和31771360)的资助。
图: WED突变干扰不同白叶枯病抗病信号途径的工作模型。
Tang J, Wang Y, Yin W, Dong G, Sun K, Teng Z, Wu X, Wang S, Qian Y, Pan X, Qian Q, and Chu C (2019) Mutation of a nucleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight. Plant Physiology doi: 10.1104/pp.19.00686.
Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C (2011) Semidominant mutations in the CC-NB-LRR-type R gene, Nls1, lead to constitutive activation of defense responses in rice. Plant Journal 66: 996-1007.
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
储成才研究组在水稻NLR类抗病基因突变导致的白叶枯病感病机制研究上取得新进展
本站小编 Free考研/2020-05-26
相关话题/信号 基因
李传友研究组在茉莉酸信号转录调控机理研究中取得新进展
茉莉酸作为一种重要的植物激素不仅调控植物对于机械损伤、昆虫取食和腐生型病原菌侵害的防御反应,还参与调控诸多生长发育过程。basic Helix-Loop-Helix (bHLH)类型转录因子MYC2是茉莉酸信号通路的核心转录因子,其所指导的转录调控过程是整个茉莉酸信号通路的核心事件。目前人们对于MY ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组发现增强子调控茉莉酸信号途径的机理
增强子是真核细胞调控基因转录的重要元件。在模式动物中,增强子与相应的基因启动子通过形成染色质环在物理上相互靠近,从而精确调控基因的时空特异性表达。然而目前在植物中,如何界定特定基因的启动子和增强子元件尚未明确,特定生理途径中增强子的系统鉴定未见报道,增强子与启动子之间染色质环的形成及其作用机理也不清 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组应邀在Annual Review of Plant Biology撰写基因组编辑技术与植物精准育种综述文章
通过基因组的定向与特异改造而实现品种的精准设计和培育是作物遗传改良研究的重要科学问题,基因组编辑有望为该问题的解决提供重要策略与途径。中国科学院遗传与发育生物学研究所高彩霞研究组致力于植物基因组编辑技术创新及作物分子设计育种应用的研究。2019年3月5日,国际重要综述期刊Annual Review ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26朱立煌研究组在水稻抗病蛋白引发的防卫信号传导中的新发现
抗病蛋白是植物免疫的重要成员,以NLR类蛋白居多,以水稻为例,其基因组中就拥有超过400个编码NLR蛋白的基因,由此可见NLR蛋白对植物免疫的重要性。作为免疫受体,抗病蛋白能引发对多种病原微生物以及昆虫的防卫反应,从而赋予植物对病原小种的免疫性。目前已知的抗病蛋白数量不少,但从病原物被抗病蛋白所识别 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组揭示植物硝酸盐信号传导通路和氮磷营养平衡分子机制
硝酸盐(nitrate)不仅是植物最主要的无机氮源,还作为信号分子激活一系列基因表达,触发硝酸盐应答反应,进而促进氮高效利用。细胞膜定位的硝酸盐转运蛋白NRT1.1(拟南芥AtNRT1.1和水稻NRT1.1B)作为硝酸盐受体(sensor),可以感知外界硝酸盐信号并触发下游应答基因表达。然而,长期以 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26中英科学家合作破译模式植物金鱼草的基因组
金鱼草(Antirrhinum majus L.)也称龙头花(snapdragon),车前科多年生草本植物,因花似金鱼或龙头而得名,是常见的盆栽、切花及庭院观赏的园艺花卉,在古罗马时代就已完成了驯化。在过去的三十年中,金鱼草一直作为分子和发育遗传学的模式作物,很多关键基因是在金鱼草中被首次发现,包括 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26焦雨铃研究组建立茎尖细胞特异基因表达图谱
基因差异表达是细胞分化和不同细胞类型形式特异功能的基础。细胞特征的转录图谱对于了解不同类型细胞如何生长发育、响应环境至关重要。但植物细胞由细胞壁固着,不易分离,很难获得细胞类型特异的转录数据。 中国科学院遗传与发育生物学研究所焦雨铃研究组在之前的工作中建立了器官边界区的细胞特异表达图谱 (Tian ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组揭示MYC2调控茉莉酸信号终止的机制
作为一种重要的植物激素,茉莉酸调控植物的防御反应和适应性生长。当植物遭遇病虫侵害或其它逆境胁迫时,活性茉莉酸被受体COI1 (CORONATINE-INSENSITIVE 1) 识别而释放核心转录因子MYC2的活性,MYC2与转录中介体亚基MED25形成功能复合物而在全基因组范围内激活茉莉酸响应基因 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26抗抑郁症药物氟西汀可缓解SHANK3基因突变猴自闭症核心症状
自闭症的发病率占普通人群的1%,目前没有有效的药物治疗。编码突触后骨架蛋白SHANK3的单基因突变是导致自闭症最常见的遗传因素。尽管Shank3突变小鼠为解析自闭症发病机制提供重要模型,但考虑到人与鼠在行为学和脑解剖学方面的种间差异,使用小动物来模拟自闭症和推动临床转化应用面临巨大挑战。与暨南大学李 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组建立植物基因组高效C-T单碱基编辑新系统
单碱基编辑技术(Base editor)是基于CRISPR系统的新型靶基因定点修饰技术,在不产生DNA双链断裂的情况下,利用胞嘧啶脱氨酶或人工进化的腺嘌呤脱氨酶对靶位点进行精准的单碱基编辑,从而实现C-T或A-G的替换。目前, 基于融合大鼠胞嘧啶脱氨酶APOBEC1的BE3介导的C-T碱基编辑技术已 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26