基因组编辑是在基因组水平对基因进行精确、定向修饰的一种高效的生物技术方法。简单、高效的CRISPR/Cas9编辑体系的出现给生命科学带来了新的技术革命。CRISPR/Cas9通常在基因组靶向位点造成DNA碱基的添加或删除,从而导致基因功能的缺失。中国科学院遗传与发育生物学研究所高彩霞研究组最新建立了一个通过CRISPR/Cas9高效调控内源mRNA翻译的方法。该方法通过提高蛋白质翻译效率,增加目标基因的编码蛋白水平。
蛋白编码基因的表达产物一般受到转录、转录后RNA加工、蛋白质翻译及翻译后加工、蛋白降解等多个水平的调控。真核细胞的mRNA由5’非翻译区(5’ Untranslated Region, 5’UTR)、编码蛋白的开放阅读框区(Open Reading Fragment)及3’端非翻译区(3’ Untranslated Region, 3’UTR)构成。研究发现5’UTR存在一些具有翻译能力的开放阅读框,称为上游开放阅读框(Upstream Open Reading Fragment, uORF)。与之对应,5’UTR之后的开放阅读框被称为主开放阅读框(Primary Open Reading Fragment, pORF)。uORF通常能够抑制下游的pORF的翻译。生物信息学分析表明uORF在动植物中广泛存在,人、小鼠、拟南芥、水稻、玉米中超过30%的mRNA含有预测的uORF,但是对uORF的功能研究与遗传操作还缺乏高效和精细的方法。
高彩霞研究组利用CRISPR/Cas9对uORF进行编辑,发现能够显著提高目标基因的翻译效率。通过CRISPR/Cas9编辑拟南芥和生菜中的4个基因的uORF翻译起始区及周边序列,获得了多个相应基因的uorf突变体。这些uorf突变体目标基因的pORF的mRNA翻译水平都有不同程度的提高。其中,通过突变维生素C合成途径中关键基因GGP(GDP-L-galactose phosphorylase)上游的uORF,可以使生菜叶片中维生素C含量提高约150%。利用CRISPR/Cas9编辑uORF翻译起始区会出现两种结果:1)完全破坏uORF的翻译起始能力导致uORF功能缺失;2)改变uORF的翻译起始密码子(例如ATG突变为翻译起始能力较弱的GTG)及其周边序列,使uORF对pORF的抑制效率发生微调。该研究展示了通过基因组编辑uORF操纵mRNA翻译而调控蛋白质水平在植物分子生物学研究及遗传育种中的应用前景。此外,该方法可能随着新型基因组编辑工具不断出现及方法的进一步优化而变得覆盖率更广且更加容易。由于uORF在动植物基因中都普遍存在,相信该方法在未来将有更加广泛的应用。
该成果于2018年8月6日在线发表于Nature Biotechnology杂志(DOI:10.1038/nbt.4202)。高彩霞研究组副研究员张华伟博士、博士生司小敏、姬祥为该论文的共同第一作者。该研究得到科技部、基金委基础科学中心以及中科院的资助。
图:CRISPR编辑uORF调控蛋白质翻译水平
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
高彩霞研究组建立基因组编辑调控内源基因蛋白质翻译效率的新方法
本站小编 Free考研/2020-05-26
相关话题/翻译 基因
高质量中国大豆基因组发布
大豆是重要的粮食经济作物,为人类提供了主要的油料和蛋白资源。大豆起源于中国,古称“菽”,约在5000年前左右由其野生种驯化而来,随后广泛传播于世界各地。大豆在引种和改良过程中产生了遗传瓶颈效应,使得来自不同主产区的大豆品种间具有显著的遗传变异。目前,我们广泛采用的大豆参考基因组来源于一个美国品种Wi ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26陈明生研究组发现基因逃离着丝粒区域的进化趋势
着丝粒及其周边是植物基因组中进化最快、结构最复杂的区域。着丝粒与近着丝粒区域不仅经历着快速的序列变化与结构重塑,而且具有转录活性的基因,也是新基因起源的热点区。 中国科学院遗传与发育生物学研究所陈明生研究组,在完成短花药野生稻全基因组测序的基础上,利用BAC测序和物理图谱等信息,完善了短花药野生稻 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组在植物基因组编辑突变体筛选方法研究中取得新进展
如何快速高效进行突变体检测和鉴定是植物基因组编辑技术迅速发展面临的重要问题之一。目前植物基因组编辑突变检测方法主要包括PCR/RE、T7EI错配切割、临界退火温度PCR (ACT-PCR)、Sanger测序和二代测序(NGS)等。以上所有的检测方法都基于PCR反应,且都有各自的不足之处。PCR/RE ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组在作物基因组单碱基编辑方法研究中取得新进展
单碱基编辑技术(Base editor)是基于CRISPR系统的新型靶基因定点修饰技术,它不需要产生DNA双链断裂(DSB)及DNA模板就可以对基因组特定碱基进行高效的替换。单碱基编辑技术可以应用于通过精确改变单个碱基实现关键氨基酸的改变,可以通过引入终止密码子实现基因的功能缺失突变,还可以对一些启 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26小麦TaGW2基因功能研究取得新进展
小麦是全球最重要的粮食作物之一,是世界上40%人口的主要食物,提高小麦产量和品质对保障粮食安全和人体健康具有重要意义。谷类作物中GW2基因是影响籽粒粒重的一个关键遗传因子,该基因在六倍体普通小麦中有3个亚基因组拷贝,即TaGW2-A1, TaGW2-B1和TaGW2-D1。已有的研究表明TaGW2- ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26凌宏清研究员领衔的小麦基因组研究团队成功完成小麦A基因组的测序和精细图谱绘制
小麦是全球最重要的粮食作物,养活了世界上40%的人口,提供了人类所需热能和蛋白质的20%。我国是世界上小麦生产和消费大国,常年种植面积为2,400万公顷左右,年产量近1.3亿吨。生产上广泛种植的普通小麦是一个经两次自然杂交而形成异源六倍体,含有A、B和D三个亚基因组,其基因组大(约17 Gb,是水稻 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26韩方普研究组在CRISPR-Cas9玉米基因组编辑方法研究中取得新进展
基因组编辑是生命科学新兴的技术并被迅速在每个实验室应用,特别是基于CRISPR-Cas9系统的基因编辑工具近年来发展较快,在医疗、农业等领域展现巨大的应用潜力。然而此前,在玉米等部分作物中基于农杆菌转化的载体进行基因组编辑的效率偏低,在一定程度影响到该技术的高效利用尤其是基于CRISPR-cas9系 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组发现控制水稻氮高效、高产与早熟关键基因
氮是植物需求量最大的矿质元素,也是促进作物增产的最重要因素之一。据统计,全世界每年施用氮肥超过1.2亿吨。氮肥大量施用不仅增加了农业生产成本,更为重要的是导致了包括气候变化、土壤酸化及水体富营养化等一系列环境灾难。此外,大量施用氮肥导致的作物“贪青晚熟”(开花和成熟延迟)现象,不仅影响(双季或三季中 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组发表利用CRISPR/Cas9 IVT或RNP实现小麦基因组编辑的方法文章
文章详细阐述了通过基因枪将CRISPR/Cas9 IVT和RNP导入小麦未成熟幼胚实现基因组定点修饰的DNA-free基因组编辑体系。介绍了整个流程包括CRISPR/Cas9 IVT和RNP的制备、编辑活性体外及原生质体验证、基因枪幼胚转化法、突变体群体的快速筛选鉴定等具体方法和实验细节。该方法只需 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26钱文峰研究组发现遗传互作网络对染色体上基因顺序的决定作用
真核生物基因在染色体上的呈线性排列。在多个物种中均有报道指出,基因的排列顺序不是完全随机的。然而基因有序排列的进化机制仍不明确。 中国科学院遗传与发育生物学研究所钱文峰研究组根据进化理论模型推测遗传互作网络是影响基因排列顺序的重要因素。研究者对基因顺序的形成进行了进化模拟计算,并对酵母遗传互作网络 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26