(计算机软件新技术国家重点实验室(南京大学) 南京 210023) (ywsun@smail.nju.edu.cn)
出版日期:
2021-12-01基金资助:
国家重点研究与发展计划项目(2018YFB1005100);国家自然科学基金项目(61772264)Graph Matching Network for Interpretable Complex Question Answering over Knowledge Graphs
Sun Yawei, Cheng Gong, Li Xiao, Qu Yuzhong(State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023)
Online:
2021-12-01Supported by:
This work was supported by the National Key Research and Development Program of China (2018YFB1005100) and the National Natural Science Foundation of China (61772264)摘要/Abstract
摘要: 知识图谱问答是人工智能领域的研究热点之一.在该任务中,自然语言问句结构与知识图谱结构之间的语义匹配是一个具有挑战的研究问题.现有工作主要利用深度学习技术对自然语言问句进行序列化编码,然后与知识图谱子图计算语义匹配,这样做法未充分利用复杂问句的结构信息,方法也缺乏可解释性.针对此问题,提出一种基于图匹配网络的知识图谱复杂问答方法TTQA.首先,通过语法分析方法,构建一个与知识图谱无关的未定查询图.然后,依据未定查询图和给定的知识图谱,构建一个与知识图谱相关的已定查询图,在其中,提出一种图匹配网络GMN,通过结合预训练语言模型和图神经网络技术,再利用注意力机制学习查询结构的上下文表示,从而得到更加丰富的结构匹配表示,用于已定查询图预测.在2个复杂问答数据集LC-QuAD 1.0和ComplexWebQuestions 1.1进行实验,结果表明:TTQA超过了现有方法.同时,通过消融实验验证了GMN的有效性.此外,TTQA生成的未定结构图和已定查询图增强了问答系统可解释性.
参考文献
相关文章 15
[1] | 孙润鑫, 马龙轩, 张伟男, 刘挺. 基于文档的对话研究[J]. 计算机研究与发展, 2021, 58(9): 1915-1924. |
[2] | 谢娟英, 鲁银圆, 孔维轩, 许升全. 基于改进RetinaNet的自然环境中蝴蝶种类识别[J]. 计算机研究与发展, 2021, 58(8): 1686-1704. |
[3] | 刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. |
[4] | 亓鹏, 曹娟, 盛强. 语义增强的多模态虚假新闻检测[J]. 计算机研究与发展, 2021, 58(7): 1456-1465. |
[5] | 王成龙, 易江燕, 陶建华, 马浩鑫, 田正坤, 傅睿博. 基于全局-时频注意力网络的语音伪造检测[J]. 计算机研究与发展, 2021, 58(7): 1466-1475. |
[6] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[7] | 张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000. |
[8] | 李梦莹, 王晓东, 阮书岚, 张琨, 刘淇. 基于双路注意力机制的学生成绩预测模型[J]. 计算机研究与发展, 2020, 57(8): 1729-1740. |
[9] | 陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768. |
[10] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[11] | 张艺璇, 郭斌, 刘佳琪, 欧阳逸, 於志文. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展, 2020, 57(5): 984-995. |
[12] | 张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045. |
[13] | 程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. |
[14] | 尉桢楷, 程梦, 周夏冰, 李志峰, 邹博伟, 洪宇, 姚建民. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展, 2020, 57(11): 2456-2466. |
[15] | 张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4544