删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于胶囊网络的对抗判别域适应算法

本站小编 Free考研考试/2022-01-01

戴宏,盛立杰,苗启广
(西安电子科技大学计算机科学与技术学院 西安 710071) (西安市大数据与视觉智能关键技术重点实验室(西安电子科技大学) 西安 710071) (hdai@stu.xidian.edu.cn)
出版日期: 2021-09-01


基金资助:国家自然科学基金项目(61772396,61902296);西安市大数据与视觉智能关键技术重点实验室项目(201805053ZD4CG37);中国博士后科学基金项目(2019M663640)

Adversarial Discriminative Domain Adaptation Algorithm with CapsNet

Dai Hong, Sheng Lijie, Miao Qiguang
(College of Computer Science and Technology, Xidian University, Xi’an 710071) (Xi’an Key Laboratory of Big Data and Intelligent Vision (Xidian University), Xi’an 710071)
Online: 2021-09-01


Supported by:This work was supported by the National Natural Science Foundation of China (61772396, 61902296), the Project of Xi’an Key Laboratory of Big Data and Intelligent Vision (201805053ZD4CG37), and the China Postdoctoral Science Foundation (2019M663640).




摘要/Abstract


摘要: 关于域适应算法的研究显示了对抗性学习填补源域和目标域间差异的有效性,但仍存在其局限性,即仅从2个域抽取的样本不足以保证大部分潜在空间的域不变性.注意到胶囊网络(capsule network, CapsNet)在捕获样本的表征不变性上具有较强的能力,通过结合二者得到了一种新的域适应学习算法.首先,提出了胶囊层卷积算法,并结合残差结构,使得训练更深的胶囊网络成为可能.实验表明,这种新的胶囊网络架构能够在捕获浅层特征时取得更佳的效果.其次,传统的对抗判别域适应算法使用的卷积基容易不加分辨地模糊源域与目标域的界限,进而造成判别效果的下降.因此,在VAE-GAN(variational auto-encoder, generative adversarial networks)的启发下,通过引入重建网络作为强约束,巧妙地利用了胶囊网络可调整为自编码器的特性,使得对抗判别域适应网络能够在卷积基进行迁移时,克服传统对抗判别域适应算法易发生模式崩塌的固有缺陷,保证判别器对源域与目标域内样本共性表征的敏感度.实验表明,该方法可以在不同复杂程度的域适应任务中取得较好的性能,并在关键标准数据集上取得了最先进的成果.






[1]钱亚冠, 何念念, 郭艳凯, 王滨, 李晖, 顾钊铨, 张旭鸿, 吴春明. 针对深度神经网络模型指纹检测的逃避算法[J]. 计算机研究与发展, 2021, 58(5): 1106-1117.
[2]付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568.
[3]陈可佳, 鲁浩, 张嘉俊. 条件变分时序图自编码器[J]. 计算机研究与发展, 2020, 57(8): 1663-1673.
[4]于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530.
[5]张宪, 史沧红, 李孝杰. 基于特征对抗对的视觉特征归因网络研究[J]. 计算机研究与发展, 2020, 57(3): 604-615.
[6]田继伟,王劲松,石凯. 基于PU与生成对抗网络的POI定位算法[J]. 计算机研究与发展, 2019, 56(9): 1843-1850.
[7]戴臣超,王洪元,倪彤光,陈首兵. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4497
相关话题/网络 计算机 视觉 数据 智能

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 人工智能前沿进展专题前言
    出版日期:2021-08-01Online:2021-08-01摘要/Abstract摘要:人工智能的迅速发展正深刻地改变着人类社会生活,在理论和方法上,人工智能呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征.数据驱动与知识驱动融合、跨媒体协同处理、人机协同增强智能、群体集成智能、自 ...
    本站小编 Free考研考试 2022-01-01
  • 基于K阶互信息估计的位置感知网络表征学习
    储晓恺1,2,范鑫鑫2,毕经平21(中国科学院大学北京100049);2(中国科学院计算技术研究所北京100190)(chuxiaokai@ict.ac.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目(62077044,61702470,62002343)Position-Awa ...
    本站小编 Free考研考试 2022-01-01
  • 基于病毒传播网络的基因序列表示学习
    马扬,刘泽一,梁星星,程光权,阳方杰,成清,刘忠(国防科技大学系统工程学院长沙410073)(yang_ma_cn@163.com)出版日期:2021-08-01基金资助:国家自然科学基金项目(62073333);湖南省研究生科研创新项目(CX20200069)GeneSequenceReprese ...
    本站小编 Free考研考试 2022-01-01
  • 基于非递减时序随机游走的动态异质网络嵌入
    郭佳雯1,2,白淇介1,2,林铸天1,宋春瑶1,2,袁晓洁1,21(南开大学网络空间安全学院天津300350);2(天津市网络与数据安全技术重点实验室(南开大学)天津300350)(guojiawen@dbis.nankai.edu.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目 ...
    本站小编 Free考研考试 2022-01-01
  • 基于孪生BERT网络的科技文献类目映射
    何贤敏1,李茂西1,何彦青21(江西师范大学计算机信息工程学院南昌330022);2(中国科学技术信息研究所北京100038)(xianminhe@jxnu.edu.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目(61662031);中国科学技术信息研究所重点工作项目(ZD202 ...
    本站小编 Free考研考试 2022-01-01
  • 网络信息生态系统中的虚假信息:检测、缓解与挑战
    Amrita,Bhattacharjee1,舒凯2,高旻3,刘欢11(亚利桑那州立大学计算机科学与工程系美国亚利桑那州坦佩85281);2(伊利诺伊理工大学计算机科学系美国伊利诺伊州芝加哥60616);3(重庆大学大数据与软件学院重庆400044)(abhatt43@asu.edu)出版日期:202 ...
    本站小编 Free考研考试 2022-01-01
  • 基于模体度的社交网络虚假信息传播机制研究
    徐铭达1,张子柯2,3,许小可11(大连民族大学信息与通信工程学院辽宁大连116600);2(浙江大学传媒与国际文化学院杭州310058);3(杭州师范大学阿里巴巴复杂科学研究中心杭州311121)(854655253@qq.com)出版日期:2021-07-01基金资助:国家自然科学基金项目(61 ...
    本站小编 Free考研考试 2022-01-01
  • 融合源信息和门控图神经网络的谣言检测研究
    杨延杰,王莉,王宇航(太原理工大学大数据学院山西晋中030600)(yangyanjie1073@link.tyut.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61872260)RumorDetectionBasedonSourceInformationandGat ...
    本站小编 Free考研考试 2022-01-01
  • 基于全局-时频注意力网络的语音伪造检测
    王成龙1,2,易江燕2,陶建华2,3,马浩鑫2,田正坤2,傅睿博21(中国科学技术大学信息科学技术学院合肥230027);2(模式识别国家重点实验室(中国科学院自动化研究所)北京100080);3(中国科学院大学人工智能学院北京100049)(chenglong.wang@nlpr.ia.ac.cn ...
    本站小编 Free考研考试 2022-01-01
  • 社交网络信息传播预测与特定信息抑制
    曹玖新1,高庆清1,夏蓉清2,刘伟佳1,朱雪林1,刘波21(东南大学网络空间安全学院南京211189);2(东南大学计算机科学与工程学院南京211189)(jx.cao@seu.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61772133,61972087);国家社会 ...
    本站小编 Free考研考试 2022-01-01