(西安电子科技大学计算机科学与技术学院 西安 710071) (西安市大数据与视觉智能关键技术重点实验室(西安电子科技大学) 西安 710071) (hdai@stu.xidian.edu.cn)
出版日期:
2021-09-01基金资助:
国家自然科学基金项目(61772396,61902296);西安市大数据与视觉智能关键技术重点实验室项目(201805053ZD4CG37);中国博士后科学基金项目(2019M663640)Adversarial Discriminative Domain Adaptation Algorithm with CapsNet
Dai Hong, Sheng Lijie, Miao Qiguang(College of Computer Science and Technology, Xidian University, Xi’an 710071) (Xi’an Key Laboratory of Big Data and Intelligent Vision (Xidian University), Xi’an 710071)
Online:
2021-09-01Supported by:
This work was supported by the National Natural Science Foundation of China (61772396, 61902296), the Project of Xi’an Key Laboratory of Big Data and Intelligent Vision (201805053ZD4CG37), and the China Postdoctoral Science Foundation (2019M663640).摘要/Abstract
摘要: 关于域适应算法的研究显示了对抗性学习填补源域和目标域间差异的有效性,但仍存在其局限性,即仅从2个域抽取的样本不足以保证大部分潜在空间的域不变性.注意到胶囊网络(capsule network, CapsNet)在捕获样本的表征不变性上具有较强的能力,通过结合二者得到了一种新的域适应学习算法.首先,提出了胶囊层卷积算法,并结合残差结构,使得训练更深的胶囊网络成为可能.实验表明,这种新的胶囊网络架构能够在捕获浅层特征时取得更佳的效果.其次,传统的对抗判别域适应算法使用的卷积基容易不加分辨地模糊源域与目标域的界限,进而造成判别效果的下降.因此,在VAE-GAN(variational auto-encoder, generative adversarial networks)的启发下,通过引入重建网络作为强约束,巧妙地利用了胶囊网络可调整为自编码器的特性,使得对抗判别域适应网络能够在卷积基进行迁移时,克服传统对抗判别域适应算法易发生模式崩塌的固有缺陷,保证判别器对源域与目标域内样本共性表征的敏感度.实验表明,该方法可以在不同复杂程度的域适应任务中取得较好的性能,并在关键标准数据集上取得了最先进的成果.
参考文献
相关文章 7
[1] | 钱亚冠, 何念念, 郭艳凯, 王滨, 李晖, 顾钊铨, 张旭鸿, 吴春明. 针对深度神经网络模型指纹检测的逃避算法[J]. 计算机研究与发展, 2021, 58(5): 1106-1117. |
[2] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
[3] | 陈可佳, 鲁浩, 张嘉俊. 条件变分时序图自编码器[J]. 计算机研究与发展, 2020, 57(8): 1663-1673. |
[4] | 于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530. |
[5] | 张宪, 史沧红, 李孝杰. 基于特征对抗对的视觉特征归因网络研究[J]. 计算机研究与发展, 2020, 57(3): 604-615. |
[6] | 田继伟,王劲松,石凯. 基于PU与生成对抗网络的POI定位算法[J]. 计算机研究与发展, 2019, 56(9): 1843-1850. |
[7] | 戴臣超,王洪元,倪彤光,陈首兵. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4497