删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于关键词注意力的细粒度面试评价方法

本站小编 Free考研考试/2022-01-01

陈楚杰1,吕建明1,2,沈华伟3
1(华南理工大学计算机科学与工程学院 广州 510006);2(大数据与智能机器人教育部重点实验室(华南理工大学) 广州 510006);3(中国科学院计算技术研究所 北京 100190) (cscjchen@mail.scut.edu.cn)
出版日期: 2021-09-01


基金资助:国家自然科学基金项目(61876065);广东省自然科学基金项目(2018A0303130022);广州市科技计划项目(201904010200);中央高校基本科研业务费专项资金项目(D2182480, D2200150)

Fine-Grained Interview Evaluation Method Based on Keyword Attention

Chen Chujie1, Lü Jianming1,2, Shen Huawei3
1(School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006);2(Key Laboratory of Big Data and Intelligent Robot (South China University of Technology), Ministry of Education, Guangzhou 510006);3(Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190)
Online: 2021-09-01


Supported by:This work was supported by the National Natural Science Foundation of China (61876065), the Natural Science Foundation of Guangdong Province (2018A0303130022), the Science and Technology Program of Guangzhou (201904010200), and the Fundamental Research Funds for the Central Universities (D2182480, D2200150).




摘要/Abstract


摘要: 海量的在线面试视频数据为智能面试评价提供了重要的数据基础.随着目前全球疫情的蔓延,网络在线面试的需求程度上升,对智能面试评价工具的需求也随之上升.结构化面试中,面试官需要依据评价标准,观察面试者所做的回答,并形成面试者人格特性、沟通技能以及领导力等方面的画像评估,以此判断面试者的特质是否与应聘职位相匹配.其中人格特性评估是公司间广泛使用的一种评估方法,因为人格特性影响着人们的语言表达、人际交往等多个方面,是辅助面试官决策该面试者是否符合其应聘岗位需求的重要参考.基于此,提出了基于循环神经网络长短期记忆(long short term memory, LSTM)以及关键词-问题注意力机制的多层次(hierarchical keyword-question attention LSTM, HKQA-LSTM)细粒度面试评价方法,旨在针对面试者的不同人格特性维度进行打分,并据此得到综合面试得分.首先,通过引入关键词注意力机制有效筛选出面试对话中与人格特性密切相关的重要词句;然后,在此基础上采用了关键词-问题层次注意力机制和2阶段的模型学习机制,充分结合面试者表述文本的多尺度上下文特征,对人格特性进行准确预测;最后通过融合人格特性得到具有较高解释性的面试综合评价结果.基于真实面试场景数据的实验结果表明,该方法能有效地评价面试者的不同人格特性得分,并准确地预测面试者总体得分.






[1]郑海斌, 陈晋音, 章燕, 张旭鸿, 葛春鹏, 刘哲, 欧阳亦可, 纪守领. 面向自然语言处理的对抗攻防与鲁棒性分析综述[J]. 计算机研究与发展, 2021, 58(8): 1727-1750.
[2]潘旭东, 张谧, 颜一帆, 陆逸凡, 杨珉. 通用深度学习语言模型的隐私风险评估[J]. 计算机研究与发展, 2021, 58(5): 1092-1105.
[3]汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705.
[4]吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
[5]曾碧卿, 曾锋, 韩旭丽, 商齐. 基于交互特征表示的评价对象抽取模型[J]. 计算机研究与发展, 2021, 58(1): 224-232.
[6]李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
[7]刘金硕, 冯阔, Jeff Z. Pan, 邓娟, 王丽娜. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336.
[8]苏锦钿,欧阳志凡,余珊珊. 基于依存树及距离注意力的句子属性情感分类[J]. 计算机研究与发展, 2019, 56(8): 1731-1745.
[9]孙小婉,王英,王鑫,孙玉东. 面向双注意力网络的特定方面情感分析模型[J]. 计算机研究与发展, 2019, 56(11): 2384-2395.
[10]陈珂,梁斌,柯文德,许波,曾国超. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展, 2018, 55(5): 945-957.
[11]侯梦薇,卫荣,陆亮,兰欣,蔡宏伟. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展, 2018, 55(12): 2587-2599.
[12]梁斌,刘全,徐进,周倩,章鹏. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8): 1724-1735.
[13]刘峤,李杨,段宏,刘瑶,秦志光. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
[14]王金水,翁伟,彭鑫. 一种基于句法分析的跟踪关系恢复方法[J]. 计算机研究与发展, 2015, 52(3): 729-737.
[15]许 焱, 金 芝, 李 戈, 魏 强,. 基于多Web信息源的主题概念网络获取[J]. 计算机研究与发展, 2013, 50(9): 1843-1854.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4498
相关话题/面试 计算机 数据 智能 网络

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 人工智能前沿进展专题前言
    出版日期:2021-08-01Online:2021-08-01摘要/Abstract摘要:人工智能的迅速发展正深刻地改变着人类社会生活,在理论和方法上,人工智能呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征.数据驱动与知识驱动融合、跨媒体协同处理、人机协同增强智能、群体集成智能、自 ...
    本站小编 Free考研考试 2022-01-01
  • 基于K阶互信息估计的位置感知网络表征学习
    储晓恺1,2,范鑫鑫2,毕经平21(中国科学院大学北京100049);2(中国科学院计算技术研究所北京100190)(chuxiaokai@ict.ac.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目(62077044,61702470,62002343)Position-Awa ...
    本站小编 Free考研考试 2022-01-01
  • 基于病毒传播网络的基因序列表示学习
    马扬,刘泽一,梁星星,程光权,阳方杰,成清,刘忠(国防科技大学系统工程学院长沙410073)(yang_ma_cn@163.com)出版日期:2021-08-01基金资助:国家自然科学基金项目(62073333);湖南省研究生科研创新项目(CX20200069)GeneSequenceReprese ...
    本站小编 Free考研考试 2022-01-01
  • 基于非递减时序随机游走的动态异质网络嵌入
    郭佳雯1,2,白淇介1,2,林铸天1,宋春瑶1,2,袁晓洁1,21(南开大学网络空间安全学院天津300350);2(天津市网络与数据安全技术重点实验室(南开大学)天津300350)(guojiawen@dbis.nankai.edu.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目 ...
    本站小编 Free考研考试 2022-01-01
  • 基于孪生BERT网络的科技文献类目映射
    何贤敏1,李茂西1,何彦青21(江西师范大学计算机信息工程学院南昌330022);2(中国科学技术信息研究所北京100038)(xianminhe@jxnu.edu.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目(61662031);中国科学技术信息研究所重点工作项目(ZD202 ...
    本站小编 Free考研考试 2022-01-01
  • 网络信息生态系统中的虚假信息:检测、缓解与挑战
    Amrita,Bhattacharjee1,舒凯2,高旻3,刘欢11(亚利桑那州立大学计算机科学与工程系美国亚利桑那州坦佩85281);2(伊利诺伊理工大学计算机科学系美国伊利诺伊州芝加哥60616);3(重庆大学大数据与软件学院重庆400044)(abhatt43@asu.edu)出版日期:202 ...
    本站小编 Free考研考试 2022-01-01
  • 基于模体度的社交网络虚假信息传播机制研究
    徐铭达1,张子柯2,3,许小可11(大连民族大学信息与通信工程学院辽宁大连116600);2(浙江大学传媒与国际文化学院杭州310058);3(杭州师范大学阿里巴巴复杂科学研究中心杭州311121)(854655253@qq.com)出版日期:2021-07-01基金资助:国家自然科学基金项目(61 ...
    本站小编 Free考研考试 2022-01-01
  • 融合源信息和门控图神经网络的谣言检测研究
    杨延杰,王莉,王宇航(太原理工大学大数据学院山西晋中030600)(yangyanjie1073@link.tyut.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61872260)RumorDetectionBasedonSourceInformationandGat ...
    本站小编 Free考研考试 2022-01-01
  • 基于全局-时频注意力网络的语音伪造检测
    王成龙1,2,易江燕2,陶建华2,3,马浩鑫2,田正坤2,傅睿博21(中国科学技术大学信息科学技术学院合肥230027);2(模式识别国家重点实验室(中国科学院自动化研究所)北京100080);3(中国科学院大学人工智能学院北京100049)(chenglong.wang@nlpr.ia.ac.cn ...
    本站小编 Free考研考试 2022-01-01
  • 社交网络信息传播预测与特定信息抑制
    曹玖新1,高庆清1,夏蓉清2,刘伟佳1,朱雪林1,刘波21(东南大学网络空间安全学院南京211189);2(东南大学计算机科学与工程学院南京211189)(jx.cao@seu.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61772133,61972087);国家社会 ...
    本站小编 Free考研考试 2022-01-01