1(计算机软件新技术国家重点实验室(南京大学) 南京 210023);2(龙岩学院数学与信息工程学院 福建龙岩 364012) (liuyanfang003@163.com)
出版日期:
2021-08-01基金资助:
国家重点研发计划项目(2018AAA0100905);福建省中青年教师教育科研项目(科技类)(JAT190743);龙岩市科技计划项目(2019LYF13002,2019LYF12010)Passive-Aggressive Learning with Feature Evolvable Streams
Liu Yanfang1,2, Li Wenbin1, Gao Yang11(State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023);2(College of Mathematics and Information Engineering, Longyan University, Longyan, Fujian 364012)
Online:
2021-08-01Supported by:
This work was supported by the National Key Research and Development Program of China (2018AAA0100905), the Education Scientific Research Project of Young Teachers of Fujian Province (JAT190743), and the Science and Technology Project of Longyan City (2019LYF13002, 2019LYF12010).摘要/Abstract
摘要: 在许多现实应用中,数据以一种特征演化流的形式收集.例如,随着传感器的更换,由旧传感器收集的数据特征会消失,新传感器收集的数据特征会出现.在线被动-主动算法已被证明可以有效地从具有固定特征空间和梯形特征空间的数据集中学习线性分类器.因此,提出了一种基于被动-主动更新策略的特征演化学习算法(passive-aggressive learning with feature evolvable streams, PAFE).该算法通过主动-被动更新策略从当前特征空间和被恢复的已消失特征空间中学习了2个模型.具体来说,在重叠时段,即新旧特征同时存在的时段,该算法用新特征恢复了消失的特征空间,同时用旧特征空间模拟了新特征空间,进而为新特征空间的模型学习提供合理的初始化.基于这2个模型,为提高算法整体性能提出了2个集成算法:组合预测和当前最优预测.在合成数据集和真实数据集上的实验结果验证了该算法的有效性.
参考文献
相关文章 15
[1] | 杨望, 高明哲, 蒋婷. 一种基于多特征集成学习的恶意代码静态检测框架[J]. 计算机研究与发展, 2021, 58(5): 1021-1034. |
[2] | 张永, 陈蓉蓉, 张晶. 基于交叉熵的安全Tri-training算法[J]. 计算机研究与发展, 2021, 58(1): 60-69. |
[3] | 贺一笑, 庞明, 姜远. 蒙德里安深度森林[J]. 计算机研究与发展, 2020, 57(8): 1594-1604. |
[4] | 刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. |
[5] | 王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. |
[6] | 王婷, 王娜, 崔运鹏, 李欢. 基于半监督学习的无线网络攻击行为检测优化方法[J]. 计算机研究与发展, 2020, 57(4): 791-802. |
[7] | 齐晴, 曹健, 刘妍岑. GitHub中软件生态系统的演化[J]. 计算机研究与发展, 2020, 57(3): 513-524. |
[8] | 程光, 钱德鑫, 郭建伟, 史海滨, 吴桦, 赵玉宇. 基于散度的网络流概念漂移分类方法[J]. 计算机研究与发展, 2020, 57(12): 2673-2682. |
[9] | 刘慧,徐金龙,赵荣彩,姚金阳. 学习模型指导的编译器优化顺序选择方法[J]. 计算机研究与发展, 2019, 56(9): 2012-2026. |
[10] | 任婕,侯博建,姜远. 多示例学习下的深度森林架构[J]. 计算机研究与发展, 2019, 56(8): 1670-1676. |
[11] | 艾科,马国帅,杨凯凯,钱宇华. 一种基于集成学习的科研合作者潜力预测分类方法[J]. 计算机研究与发展, 2019, 56(7): 1383-1395. |
[12] | 张皓,吴建鑫. 基于深度特征的无监督图像检索研究综述[J]. 计算机研究与发展, 2018, 55(9): 1829-1842. |
[13] | 郭颖婕,刘晓燕,吴辰熙,郭茂祖,李傲. 基于U统计量和集成学习的基因互作检测方法[J]. 计算机研究与发展, 2018, 55(8): 1683-1693. |
[14] | 朱真峰,翟艳祥,叶阳东. 一种线性的在线AUC优化方法[J]. 计算机研究与发展, 2018, 55(12): 2725-2733. |
[15] | 李智恒,桂颖溢,杨志豪,林鸿飞,王健. 基于生物医学文献的化学物质致病关系抽取[J]. 计算机研究与发展, 2018, 55(1): 198-206. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4466