(哈尔滨理工大学计算机科学与技术学院 哈尔滨 150000) (1820410060@stu.hrbust.edu.cn)
出版日期:
2021-08-01基金资助:
国家自然科学基金项目(61172168)Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection
Huang Xunhua, Zhang Fengbin, Fan Haoyi, Xi Liang(College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150000)
Online:
2021-08-01Supported by:
This work was supported by the National Natural Science Foundation of China (61172168).摘要/Abstract
摘要: 时间序列异常检测旨在发现对应时序特征中不符合一般规律的特异性模式,是机器学习领域重要的研究方向之一.然而,现有的时序异常检测方法大多为单模态学习,忽略了时序信息在多模态空间上不同特征分布的关联性和互补性,不能充分利用已有信息进行有效地模式挖掘,从而造成检测效果差等问题.为此,提出了一种基于多模态对抗学习的无监督时间序列异常检测模型.首先,将原始时间序列转换至频域空间,构造多模态时间序列表示.其次,提出多模态生成对抗网络模型,针对多模态时间序列,实现正常时序信息关于时域和频域特征分布的无监督联合学习.最后,通过将异常检测问题转化为时间序列在时域和频域空间的重构度量问题,从时域空间和频域空间2个方面度量时间序列的异常值,实现更有效的异常检测.在时间序列数据集合UCR和MIT-BIH中的6个真实数据集的实验结果表明,在异常检测任务上相较于传统单模态异常检测方法,提出方法在AUC和AP这2个性能指标上最高分别提升了12.50%和21.59%,证明了方法的有效性.
参考文献
相关文章 15
[1] | 亓鹏,曹娟,盛强. 语义增强的多模态虚假新闻检测[J]. 计算机研究与发展, 2021, 58(7): 1456-1465. |
[2] | 翁泽佳,陈静静,姜育刚. 基于域对抗学习的可泛化虚假人脸检测方法研究[J]. 计算机研究与发展, 2021, 58(7): 1476-1489. |
[3] | 张燕咏, 张莎, 张昱, 吉建民, 段逸凡, 黄奕桐, 彭杰, 张宇翔. 基于多模态融合的自动驾驶感知及计算[J]. 计算机研究与发展, 2020, 57(9): 1781-1799. |
[4] | 张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045. |
[5] | 贾颖霞, 郎丛妍, 冯松鹤. 基于类别相关的领域自适应交通图像语义分割方法[J]. 计算机研究与发展, 2020, 57(4): 876-887. |
[6] | 卓君宝, 苏驰, 王树徽, 黄庆明. 最小熵迁移对抗散列方法[J]. 计算机研究与发展, 2020, 57(4): 888-896. |
[7] | 刘金硕, 冯阔, Jeff Z. Pan, 邓娟, 王丽娜. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336. |
[8] | 赵洪科,吴李康,李徵,张兮,刘淇,陈恩红. 基于深度神经网络结构的互联网金融市场动态预测[J]. 计算机研究与发展, 2019, 56(8): 1621-1631. |
[9] | 刘颉羲,陈松灿. 基于混合门单元的非平稳时间序列预测[J]. 计算机研究与发展, 2019, 56(8): 1642-1651. |
[10] | 高腾飞,刘勇琰,汤云波,张垒,陈丹. 面向时间序列大数据海量并行贝叶斯因子化分析方法[J]. 计算机研究与发展, 2019, 56(7): 1567-1577. |
[11] | 彭成维,云晓春,张永铮,李书豪. 一种基于域名请求伴随关系的恶意域名检测方法[J]. 计算机研究与发展, 2019, 56(6): 1263-1274. |
[12] | 蔡国永,吕光瑞,徐智. 基于层次化深度关联融合网络的社交媒体情感分类[J]. 计算机研究与发展, 2019, 56(6): 1312-1324. |
[13] | 奠雨洁,金琴. 视听相关的多模态概念检测[J]. 计算机研究与发展, 2019, 56(5): 1071-1081. |
[14] | 张振国,王超,温延龙,袁晓洁. 基于相似性连接的时间序列Shapelets提取[J]. 计算机研究与发展, 2019, 56(3): 594-610. |
[15] | 刘欢, 郑庆华, 罗敏楠, 赵洪科, 肖阳, 吕彦章. 基于跨域对抗学习的零样本分类[J]. 计算机研究与发展, 2019, 56(12): 2521-2535. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4472