删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于多模态对抗学习的无监督时间序列异常检测

本站小编 Free考研考试/2022-01-01

黄训华,张凤斌,樊好义,席亮
(哈尔滨理工大学计算机科学与技术学院 哈尔滨 150000) (1820410060@stu.hrbust.edu.cn)
出版日期: 2021-08-01


基金资助:国家自然科学基金项目(61172168)

Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection

Huang Xunhua, Zhang Fengbin, Fan Haoyi, Xi Liang
(College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150000)
Online: 2021-08-01


Supported by:This work was supported by the National Natural Science Foundation of China (61172168).




摘要/Abstract


摘要: 时间序列异常检测旨在发现对应时序特征中不符合一般规律的特异性模式,是机器学习领域重要的研究方向之一.然而,现有的时序异常检测方法大多为单模态学习,忽略了时序信息在多模态空间上不同特征分布的关联性和互补性,不能充分利用已有信息进行有效地模式挖掘,从而造成检测效果差等问题.为此,提出了一种基于多模态对抗学习的无监督时间序列异常检测模型.首先,将原始时间序列转换至频域空间,构造多模态时间序列表示.其次,提出多模态生成对抗网络模型,针对多模态时间序列,实现正常时序信息关于时域和频域特征分布的无监督联合学习.最后,通过将异常检测问题转化为时间序列在时域和频域空间的重构度量问题,从时域空间和频域空间2个方面度量时间序列的异常值,实现更有效的异常检测.在时间序列数据集合UCR和MIT-BIH中的6个真实数据集的实验结果表明,在异常检测任务上相较于传统单模态异常检测方法,提出方法在AUC和AP这2个性能指标上最高分别提升了12.50%和21.59%,证明了方法的有效性.






[1]亓鹏,曹娟,盛强. 语义增强的多模态虚假新闻检测[J]. 计算机研究与发展, 2021, 58(7): 1456-1465.
[2]翁泽佳,陈静静,姜育刚. 基于域对抗学习的可泛化虚假人脸检测方法研究[J]. 计算机研究与发展, 2021, 58(7): 1476-1489.
[3]张燕咏, 张莎, 张昱, 吉建民, 段逸凡, 黄奕桐, 彭杰, 张宇翔. 基于多模态融合的自动驾驶感知及计算[J]. 计算机研究与发展, 2020, 57(9): 1781-1799.
[4]张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.
[5]贾颖霞, 郎丛妍, 冯松鹤. 基于类别相关的领域自适应交通图像语义分割方法[J]. 计算机研究与发展, 2020, 57(4): 876-887.
[6]卓君宝, 苏驰, 王树徽, 黄庆明. 最小熵迁移对抗散列方法[J]. 计算机研究与发展, 2020, 57(4): 888-896.
[7]刘金硕, 冯阔, Jeff Z. Pan, 邓娟, 王丽娜. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336.
[8]赵洪科,吴李康,李徵,张兮,刘淇,陈恩红. 基于深度神经网络结构的互联网金融市场动态预测[J]. 计算机研究与发展, 2019, 56(8): 1621-1631.
[9]刘颉羲,陈松灿. 基于混合门单元的非平稳时间序列预测[J]. 计算机研究与发展, 2019, 56(8): 1642-1651.
[10]高腾飞,刘勇琰,汤云波,张垒,陈丹. 面向时间序列大数据海量并行贝叶斯因子化分析方法[J]. 计算机研究与发展, 2019, 56(7): 1567-1577.
[11]彭成维,云晓春,张永铮,李书豪. 一种基于域名请求伴随关系的恶意域名检测方法[J]. 计算机研究与发展, 2019, 56(6): 1263-1274.
[12]蔡国永,吕光瑞,徐智. 基于层次化深度关联融合网络的社交媒体情感分类[J]. 计算机研究与发展, 2019, 56(6): 1312-1324.
[13]奠雨洁,金琴. 视听相关的多模态概念检测[J]. 计算机研究与发展, 2019, 56(5): 1071-1081.
[14]张振国,王超,温延龙,袁晓洁. 基于相似性连接的时间序列Shapelets提取[J]. 计算机研究与发展, 2019, 56(3): 594-610.
[15]刘欢, 郑庆华, 罗敏楠, 赵洪科, 肖阳, 吕彦章. 基于跨域对抗学习的零样本分类[J]. 计算机研究与发展, 2019, 56(12): 2521-2535.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4472
相关话题/计算机 序列 空间 信息 网络

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于融合多尺度标记信息的深度交互式图像分割
    丁宗元1,孙权森1,王涛1,王洪元21(南京理工大学计算机科学与技术学院南京210094);2(常州大学计算机与人工智能学院江苏常州213164)(dzyha2011@163.com)出版日期:2021-08-01基金资助:国家自然科学基金项目(61802188,61673220,61976028) ...
    本站小编 Free考研考试 2022-01-01
  • 基于孪生BERT网络的科技文献类目映射
    何贤敏1,李茂西1,何彦青21(江西师范大学计算机信息工程学院南昌330022);2(中国科学技术信息研究所北京100038)(xianminhe@jxnu.edu.cn)出版日期:2021-08-01基金资助:国家自然科学基金项目(61662031);中国科学技术信息研究所重点工作项目(ZD202 ...
    本站小编 Free考研考试 2022-01-01
  • 网络信息生态系统中的虚假信息:检测、缓解与挑战
    Amrita,Bhattacharjee1,舒凯2,高旻3,刘欢11(亚利桑那州立大学计算机科学与工程系美国亚利桑那州坦佩85281);2(伊利诺伊理工大学计算机科学系美国伊利诺伊州芝加哥60616);3(重庆大学大数据与软件学院重庆400044)(abhatt43@asu.edu)出版日期:202 ...
    本站小编 Free考研考试 2022-01-01
  • 虚假信息检测专题前言
    出版日期:2021-07-01Online:2021-07-01摘要/Abstract摘要:虚假信息检测旨在综合应用自然语言处理、社交挖掘、跨模态分析等智能处理手段,发现并利用信息的内在特征、产生机理与传播规律,为以假新闻为代表的虚假、伪造信息的识别与干预提供理论和技术支持.《Science》在20 ...
    本站小编 Free考研考试 2022-01-01
  • 基于模体度的社交网络虚假信息传播机制研究
    徐铭达1,张子柯2,3,许小可11(大连民族大学信息与通信工程学院辽宁大连116600);2(浙江大学传媒与国际文化学院杭州310058);3(杭州师范大学阿里巴巴复杂科学研究中心杭州311121)(854655253@qq.com)出版日期:2021-07-01基金资助:国家自然科学基金项目(61 ...
    本站小编 Free考研考试 2022-01-01
  • 融合源信息和门控图神经网络的谣言检测研究
    杨延杰,王莉,王宇航(太原理工大学大数据学院山西晋中030600)(yangyanjie1073@link.tyut.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61872260)RumorDetectionBasedonSourceInformationandGat ...
    本站小编 Free考研考试 2022-01-01
  • 基于全局-时频注意力网络的语音伪造检测
    王成龙1,2,易江燕2,陶建华2,3,马浩鑫2,田正坤2,傅睿博21(中国科学技术大学信息科学技术学院合肥230027);2(模式识别国家重点实验室(中国科学院自动化研究所)北京100080);3(中国科学院大学人工智能学院北京100049)(chenglong.wang@nlpr.ia.ac.cn ...
    本站小编 Free考研考试 2022-01-01
  • 基于粗粒度数据流架构的稀疏卷积神经网络加速
    吴欣欣1,2,3,欧焱1,2,3,李文明1,2,王达1,2,张浩1,2,范东睿1,2,31(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院计算技术研究所北京100190);3(中国科学院大学计算机科学与技术学院北京100049)(wuxinxin@ict. ...
    本站小编 Free考研考试 2022-01-01
  • 社交网络信息传播预测与特定信息抑制
    曹玖新1,高庆清1,夏蓉清2,刘伟佳1,朱雪林1,刘波21(东南大学网络空间安全学院南京211189);2(东南大学计算机科学与工程学院南京211189)(jx.cao@seu.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61772133,61972087);国家社会 ...
    本站小编 Free考研考试 2022-01-01
  • 计算机芯片关键技术前沿与进展专题前言
    出版日期:2021-06-01Online:2021-06-01摘要/Abstract摘要:“计算机体系结构前沿技术2021”专题———“计算机芯片关键技术前沿与进展”,集中介绍计算机芯片设计、测试、验证方面的新理论、新技术,以及新型部件和新型芯片系统.本专题包括关于处理器芯片敏捷设计和类脑计算的2 ...
    本站小编 Free考研考试 2022-01-01