1(华东师范大学计算机科学与技术学院 上海 200062);2(复旦大学计算机科学技术学院 上海 200433);3(之江实验室 杭州 310000) (51194501030@stu.ecnu.edu.cn)
出版日期:
2021-07-01基金资助:
国家自然科学基金项目(61972155);浙江省自然科学基金重点项目(LZ21F030001);之江实验室PI研究项目(111007-PI2001);之江实验室开放课题资助项目(2019KB0AB04)Survey of Deep Learning Based Graph Anomaly Detection Methods
Chen Bofeng1, Li Jingdong1, Lu Xingjian1, Sha Chaofeng2, Wang Xiaoling1, Zhang Ji31(School of Computer Science and Technology, East China Normal University, Shanghai 200062);2(School of Computer Science, Fudan University, Shanghai 200433);3(Zhejiang Lab, Hangzhou 310000)
Online:
2021-07-01Supported by:
This work was supported by the National Natural Science Foundation of China (61972155), the Zhejiang Provincial Natural Science Foundation of China (LZ21F030001), the PI Research Project of Zhejiang Lab (111007-PI2001), and Zhejiang Lab (2019KB0AB04).摘要/Abstract
摘要: 图异常检测旨在大图或海量图数据库中寻找“陌生”或“不寻常”模式,具有广泛的应用场景.深度学习可以从数据中学习隐含的规律,在提取数据中潜在复杂模式方面表现出优越的性能.近年来随着基于深度神经网络的图表示学习取得显著进展,如何利用深度学习方法进行图异常检测引起了学术界和产业界的广泛关注.尽管最近一系列研究从图的角度对异常检测技术进行了调研,但是缺少对深度学习技术下的图异常检测技术的关注.首先给出了静态图和动态图上各类常见的异常定义,然后调研了基于深度神经网络的图表示学习方法,接着从静态图和动态图的角度出发,梳理了基于深度学习的图异常检测的研究现状,并总结了图异常检测的应用场景和相关数据集,最后讨论了图异常检测技术目前面临的挑战和未来的研究方向.
参考文献
相关文章 15
[1] | 马扬, 刘泽一, 梁星星, 程光权, 阳方杰, 成清, 刘忠. 基于病毒传播网络的基因序列表示学习[J]. 计算机研究与发展, 2021, 58(8): 1642-1654. |
[2] | 黄训华, 张凤斌, 樊好义, 席亮. 基于多模态对抗学习的无监督时间序列异常检测[J]. 计算机研究与发展, 2021, 58(8): 1655-1667. |
[3] | 丁宗元, 孙权森, 王涛, 王洪元. 基于融合多尺度标记信息的深度交互式图像分割[J]. 计算机研究与发展, 2021, 58(8): 1705-1717. |
[4] | 李涵, 严明玉, 吕征阳, 李文明, 叶笑春, 范东睿, 唐志敏. 图神经网络加速结构综述[J]. 计算机研究与发展, 2021, 58(6): 1204-1229. |
[5] | 王慧娇, 丛鹏, 蒋华, 韦永壮. 基于深度学习的SIMON32/64安全性分析[J]. 计算机研究与发展, 2021, 58(5): 1056-1064. |
[6] | 潘旭东, 张谧, 颜一帆, 陆逸凡, 杨珉. 通用深度学习语言模型的隐私风险评估[J]. 计算机研究与发展, 2021, 58(5): 1092-1105. |
[7] | 李明慧, 江沛佩, 王骞, 沈超, 李琦. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展, 2021, 58(5): 909-926. |
[8] | 陈晋音, 黄国瀚, 张敦杰, 张旭鸿, 纪守领. 一种面向图神经网络的图重构防御方法[J]. 计算机研究与发展, 2021, 58(5): 1075-1091. |
[9] | 汪嘉来, 张超, 戚旭衍, 荣易. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. |
[10] | 周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943. |
[11] | 汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705. |
[12] | 陈磊, 王丹丹, 王青, 石琳. 基于图挖掘扩展学习的增强需求跟踪恢复方法[J]. 计算机研究与发展, 2021, 58(4): 777-793. |
[13] | 严明玉, 李涵, 邓磊, 胡杏, 叶笑春, 张志敏, 范东睿, 谢源. 图计算加速架构综述[J]. 计算机研究与发展, 2021, 58(4): 862-887. |
[14] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[15] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4455