1(中国科学院大学国家计算机网络入侵防范中心 北京 101408);2(兰州理工大学计算机与通信学院 兰州 730050);3(西安电子科技大学网络与信息安全学院 西安 710071);4(海南大学计算机与网络空间安全学院 海口 570228) (zhangyq@ucas.ac.cn)
出版日期:
2021-05-01基金资助:
国家重点研发计划项目(2018YFB0804701);国家自然科学基金项目(U1836210,61762060);甘肃省科技厅重点研发计划项目(20YF3GA016)A Review of Fuzzing Techniques
Ren Zezhong1, Zheng Han1, Zhang Jiayuan2, Wang Wenjie1, Feng Tao2, Wang He3, Zhang Yuqing1,3,41(National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, Beijing 101408);2(School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050);3(School of Cyber Engineering, Xidian University, Xi’an 710071);4(School of Computer Science and Cyberspace Security, Hainan University, Haikou 570228)
Online:
2021-05-01Supported by:
This work was supported by the National Key Research and Development Program of China (2018YFB0804701), the National Natural Science Foundation of China (U1836210, 61762060), and the Key Research and Development Program of the Science and Technology Department of Gansu Province of China (20YF3GA016).摘要/Abstract
摘要: 模糊测试是一种安全测试技术,主要用于检测安全漏洞,近几年模糊测试技术经历了快速发展,因此有必要对相关成果进行总结和分析.通过搜集和分析网络与系统安全国际四大顶级安全会议(IEEE S&P,USENIX Security,CCS, NDSS)中相关的文章,总结出模糊测试的基本工作流程,包括:预处理、输入数据构造、输入选择、评估、结果分析这5个环节,针对每个环节中面临的任务以及挑战,结合相应的研究成果进行分析和总结,其中重点分析以American Fuzzy Lop工具及其改进成果为代表的,基于覆盖率引导的模糊测试方法.模糊测试技术在不同领域中使用时,面对着巨大的差异性,通过对相应文献进行整理和分析,总结出特定领域中使用模糊测试的独特需求以及相应的解决方法,重点关注物联网领域,以及内核安全领域.近些年反模糊测试技术以及机器学习技术的进步,给模糊测技术的发展带来了挑战和机遇,这些机遇和挑战为下一步的研究提供了方向参考.
参考文献
相关文章 15
[1] | 邵天竺, 王晓亮, 陈文龙, 唐晓岚, 徐敏. 一种减少网络振动的智能路由选择算法设计[J]. 计算机研究与发展, 2021, 58(6): 1261-1274. |
[2] | 孙聪, 李占魁, 陈亮, 马建峰, 乔新博. 面向数字货币特征的细粒度代码注入攻击检测[J]. 计算机研究与发展, 2021, 58(5): 1035-1044. |
[3] | 汪嘉来, 张超, 戚旭衍, 荣易. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. |
[4] | 汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705. |
[5] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[6] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[7] | 于畅, 王雅文, 林欢, 宫云战. 基于故障检测上下文的等价变异体识别算法[J]. 计算机研究与发展, 2021, 58(1): 83-97. |
[8] | 李双峰. TensorFlow Lite:端侧机器学习框架[J]. 计算机研究与发展, 2020, 57(9): 1839-1853. |
[9] | 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986. |
[10] | 丁成诚, 陶蔚, 陶卿. 一种三参数统一化动量方法及其最优收敛速率[J]. 计算机研究与发展, 2020, 57(8): 1571-1580. |
[11] | 贺一笑, 庞明, 姜远. 蒙德里安深度森林[J]. 计算机研究与发展, 2020, 57(8): 1594-1604. |
[12] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
[13] | 陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. |
[14] | 蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. |
[15] | 刘辰屹, 徐明伟, 耿男, 张翔. 基于机器学习的智能路由算法综述[J]. 计算机研究与发展, 2020, 57(4): 671-687. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4426