1(西安电子科技大学网络与信息安全学院 西安 710071);2(西安电子科技大学计算机科学与技术学院 西安 710071);3(西安电子科技大学人工智能学院 西安 710071) (litengxidian@gmail.com)
出版日期:
2021-05-01基金资助:
国家自然科学基金青年科学基金项目(61902291);中国博士后基金项目(2019M653567);陕西省自然科学基金项目(2019JM-425);中央高校基本科研业务费专项资金(JB191507)Privacy-Preserving Network Attack Provenance Based on Graph Convolutional Neural Network
Li Teng1, Qiao Wei2, Zhang Jiawei1, Gao Yiyang3, Wang Shenao1, Shen Yulong2, Ma Jianfeng11(School of Cyber Engineering, Xidian University, Xi’an 710071);2(School of Computer Science and Technology, Xidian University, Xi’an 710071);3(School of Artificial Intelligence, Xidian University, Xi’an 710071)
Online:
2021-05-01Supported by:
This work was supported by the National Natural Science Foundation of China (61902291), the China Postdoctoral Science Foundation (2019M653567), the Natural Science Foundation of Shaanxi Province of China (2019JM-425), and the Fundamental Research Funds for the Central Universities (JB191507).摘要/Abstract
摘要: APT(advanced persistent threat)攻击潜伏时间长,目的性强,会通过变种木马、勒索病毒、组建僵尸网络等手段从内部瓦解企业安全堡垒.但现有攻击溯源方法都只针对单一日志或流量数据,这导致了无法追溯多阶段攻击的完整过程.并且因为日志条目间关系复杂,日志关系图中会产生严重的状态爆炸问题,导致难以对攻击进行准确的分类识别.同时,在利用日志及流量数据进行攻击溯源过程中,很少考虑到数据隐私保护问题.为解决这些问题,提出了一种具有隐私保护的基于图卷积神经网络的攻击溯源方法.通过监督学习解决了因多日志关系连接导致的状态爆炸,对Louvain社区发现算法进行优化从而提高了检测速度及准确性,利用图卷积神经网络对攻击进行有效的分类,并结合属性基加密实现了日志数据的隐私保护.通过复现4种APT攻击测试方法来检测速度和效率.实验结果表明:该方法的检测时间最多可有90%的缩减,攻击溯源准确率可达92%.
参考文献
相关文章 15
[1] | 杨尧林, 和红杰, 陈帆, 原长琦. 基于预测误差自适应编码的图像加密可逆数据隐藏[J]. 计算机研究与发展, 2021, 58(6): 1340-1350. |
[2] | 李明慧, 江沛佩, 王骞, 沈超, 李琦. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展, 2021, 58(5): 909-926. |
[3] | 周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943. |
[4] | 牛淑芬, 谢亚亚, 杨平平, 杜小妮. 区块链上基于云辅助的属性基可搜索加密方案[J]. 计算机研究与发展, 2021, 58(4): 811-821. |
[5] | 孟小峰, 刘立新. 基于区块链的数据透明化:问题与挑战[J]. 计算机研究与发展, 2021, 58(2): 237-252. |
[6] | 王会勇, 唐士杰, 丁勇, 王玉珏, 李佳慧. 生物特征识别模板保护综述[J]. 计算机研究与发展, 2020, 57(5): 1003-1021. |
[7] | 黄克振, 连一峰, 冯登国, 张海霞, 刘玉岭, 马向亮. 基于区块链的网络安全威胁情报共享模型[J]. 计算机研究与发展, 2020, 57(4): 836-846. |
[8] | 王斌, 张磊, 张国印. 敏感渐进不可区分的位置隐私保护[J]. 计算机研究与发展, 2020, 57(3): 616-630. |
[9] | 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362. |
[10] | 黄海平, 张东军, 王凯, 朱毅凯, 王汝传. 带权值的大规模社交网络数据隐私保护方法[J]. 计算机研究与发展, 2020, 57(2): 363-377. |
[11] | 芦效峰, 廖钰盈, Pietro Lio, Pan Hui. 一种面向边缘计算的高效异步联邦学习机制[J]. 计算机研究与发展, 2020, 57(12): 2571-2582. |
[12] | 王涛春, 金鑫, 吕成梅, 陈付龙, 赵传信. 移动群智感知中融合数据的隐私保护方法[J]. 计算机研究与发展, 2020, 57(11): 2337-2347. |
[13] | 周俊, 沈华杰, 林中允, 曹珍富, 董晓蕾. 边缘计算隐私保护研究进展[J]. 计算机研究与发展, 2020, 57(10): 2027-2051. |
[14] | 林玥, 刘鹏, 王鹤, 王文杰, 张玉清. 网络安全威胁情报共享与交换研究综述[J]. 计算机研究与发展, 2020, 57(10): 2052-2065. |
[15] | 魏立斐, 陈聪聪, 张蕾, 李梦思, 陈玉娇, 王勤. 机器学习的安全问题及隐私保护[J]. 计算机研究与发展, 2020, 57(10): 2066-2085. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4422