1(南京信息工程大学计算机与软件学院 南京 210044);2(鹏城实验室 广东深圳 518066);3(清华大学电子工程系 北京 100084) (fzj@nuist.edu.cn)
出版日期:
2021-03-01基金资助:
国家自然科学基金项目(U1836110, 61602253, 61802058);江苏省自然科学基金(BK20200039)Recent Advances in Image Steganography Based on Deep Learning
Fu Zhangjie1,2, Li Enlu1, Cheng Xu1, Huang Yongfeng3, Hu Yuting31(School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044);2(Peng Cheng Laboratory, Shenzhen, Guangdong 518066);3(Department of Electronic Engineering, Tsinghua University, Beijing 100084)
Online:
2021-03-01Supported by:
This work was supported by the National Natural Science Foundation of China (U1836110, 61602253, 61802058) and the Natural Science Foundation of Jiangsu Province (BK20200039).摘要/Abstract
摘要: 图像隐写是信息安全领域的研究热点之一.早期隐写方法通过修改载体图像获得含密图像, 导致图像统计特性发生变化, 因此难以抵抗基于高维统计特征分析的检测.随着深度学习的发展, 研究者们提出了许多基于深度学习的图像隐写方法, 使像素修改更隐蔽、隐写过程更智能.为了更好地研究图像隐写技术, 对基于深度学习的图像隐写方法进行综述.首先根据图像隐写过程, 从3个方面分析了基于深度学习的图像隐写方法:1)从生成对抗网络和对抗样本2个角度介绍载体图像获取方法; 2)分析基于深度学习的隐写失真设计方法; 3)阐述基于编码-解码网络的含密图像生成方法.然后, 分析和总结了无载体图像隐写方法的优缺点, 该类方法无需载体图像即可实现图像隐写, 因此在对抗统计分析方面存在天然优势.最后, 在深入分析与总结基于深度学习的图像隐写与无载体图像隐写2类方法优缺点的基础上, 对图像隐写的发展方向进行了探讨与展望.
参考文献
相关文章 15
[1] | 王慧娇, 丛鹏, 蒋华, 韦永壮. 基于深度学习的SIMON32/64安全性分析[J]. 计算机研究与发展, 2021, 58(5): 1056-1064. |
[2] | 钱亚冠, 何念念, 郭艳凯, 王滨, 李晖, 顾钊铨, 张旭鸿, 吴春明. 针对深度神经网络模型指纹检测的逃避算法[J]. 计算机研究与发展, 2021, 58(5): 1106-1117. |
[3] | 潘旭东, 张谧, 颜一帆, 陆逸凡, 杨珉. 通用深度学习语言模型的隐私风险评估[J]. 计算机研究与发展, 2021, 58(5): 1092-1105. |
[4] | 李明慧, 江沛佩, 王骞, 沈超, 李琦. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展, 2021, 58(5): 909-926. |
[5] | 汪嘉来, 张超, 戚旭衍, 荣易. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. |
[6] | 周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943. |
[7] | 汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705. |
[8] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[9] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[10] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
[11] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[12] | 李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
[13] | 孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33. |
[14] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
[15] | 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4386