1(计算机软件新技术国家重点实验室(南京大学) 南京 210023);2(龙岩学院数学与信息工程学院 福建龙岩 364012) (liuyanfang003@163.com)
出版日期:
2020-08-01基金资助:
国家重点研发计划项目(2017YFB0702600, 2017YFB0702601);国家自然科学基金项目(61806096);福建省中青年教师教育科研项目(科技类)(JAT170577,JAT190743);龙岩市科技计划项目(2019LYF13002)Adaptive Neighborhood Embedding Based Unsupervised Feature Selection
Liu Yanfang1,2, Li Wenbin1, Gao Yang11(State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023);2(College of Mathematics and Information Engineering, Longyan University, Longyan, Fujian 364012)
Online:
2020-08-01Supported by:
This work was supported by the National Key Research and Development Program of China (2017YFB0702600, 2017YFB0702601), the National Natural Science Foundation of China (61806096), the Education Scientific Research Project of Young Teachers of Fujian Province (JAT170577, JAT190743), and the Science and Technology Project of Longyan City (2019LYF13002).摘要/Abstract
摘要: 无监督特征选择算法可以对高维无标记数据进行有效的降维,从而减少数据处理的时间和空间复杂度,避免算法模型出现过拟合现象.然而,现有的无监督特征选择方法大都运用k近邻法捕捉数据样本的局部几何结构,忽略了数据分布不均的问题.为了解决这个问题,提出了一种基于自适应邻域嵌入的无监督特征选择(adaptive neighborhood embedding based unsupervised feature selection, ANEFS)算法,该算法根据数据集自身的分布特点确定每个样本的近邻数,进而构造样本相似矩阵,同时引入从高维空间映射到低维空间的中间矩阵,利用拉普拉斯乘子法优化目标函数进行求解.6个UCI数据集的实验结果表明:所提出的算法能够选出具有更高聚类精度和互信息的特征子集.
参考文献
相关文章 15
[1] | 李松, 胡晏铭, 郝晓红, 张丽平, 郝忠孝. 基于维度分组降维的高维数据近似k近邻查询[J]. 计算机研究与发展, 2021, 58(3): 609-623. |
[2] | 郭亚庆,王文剑,苏美红. 一种针对异常点的自适应回归特征选择方法[J]. 计算机研究与发展, 2019, 56(8): 1695-1707. |
[3] | 张皓,吴建鑫. 基于深度特征的无监督图像检索研究综述[J]. 计算机研究与发展, 2018, 55(9): 1829-1842. |
[4] | 王玲,孟建瑶. 基于特征变权的动态模糊特征选择算法[J]. 计算机研究与发展, 2018, 55(5): 893-907. |
[5] | 姚晟,徐风,赵鹏,纪霞. 基于自适应邻域空间粗糙集模型的直觉模糊熵特征选择[J]. 计算机研究与发展, 2018, 55(4): 802-814. |
[6] | 许行,张凯,王文剑. 一种小样本数据的特征选择方法[J]. 计算机研究与发展, 2018, 55(10): 2321-2330. |
[7] | 孟桓羽,刘真,王芳,徐家栋,张国强. 基于图和改进K近邻模型的高效协同过滤推荐算法[J]. 计算机研究与发展, 2017, 54(7): 1426-1438. |
[8] | 王珺,卫金茂,张璐. 基于保留分类信息的多任务特征学习算法[J]. 计算机研究与发展, 2017, 54(3): 537-548. |
[9] | 谈超,吉根林,赵斌. 基于增量切空间校准的自适应流式大数据学习算法[J]. 计算机研究与发展, 2017, 54(11): 2547-2557. |
[10] | 董红斌,滕旭阳,杨雪. 一种基于关联信息熵度量的特征选择方法[J]. 计算机研究与发展, 2016, 53(8): 1684-1695. |
[11] | 常青,刘中金,王猛涛,陈昱,石志强,孙利民. VDNS: 一种跨平台的固件漏洞关联算法[J]. 计算机研究与发展, 2016, 53(10): 2288-2298. |
[12] | 杨昙,冯翔,虞慧群. 基于多群体公平模型的特征选择算法[J]. 计算机研究与发展, 2015, 52(8): 1742-1756. |
[13] | 邵超,张啸剑. 基于通勤时间距离的流形聚类与可视化[J]. 计算机研究与发展, 2015, 52(8): 1757-1767. |
[14] | 唐成华,刘鹏程,汤申生,谢逸. 基于特征选择的模糊聚类异常入侵行为检测[J]. 计算机研究与发展, 2015, 52(3): 718-728. |
[15] | 段洁,胡清华,张灵均,钱宇华,李德玉. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展, 2015, 52(1): 56-65. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4233