1(西南交通大学信息科学与技术学院 成都 610031);2(台湾科技大学计算机科学与信息工程系 台北 10607) (sddu@swjtu.edu.cn)
出版日期:
2020-08-01基金资助:
国家重点研发计划项目(2019YFB2101801);国家自然科学基金项目(61773324, 61976247)A Sequence-to-Sequence Spatial-Temporal Attention Learning Model for Urban Traffic Flow Prediction
Du Shengdong1, Li Tianrui1, Yang Yan1, Wang Hao1, Xie Peng1, Horng Shi-Jinn21(School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031);2(Department of Computer Science and Information Engineering, Taiwan University of Science and Technology, Taipei 10607)
Online:
2020-08-01Supported by:
This work was supported by the National Key Research and Development Program of China (2019YFB2101801) and the National Natural Science Foundation of China (61773324, 61976247).摘要/Abstract
摘要: 城市交通流预测是研究交通时空序列数据的动态演化并预测未来交通情况的关键技术,对于智能交通预警及管理决策来讲至关重要.但是有效的交通流建模非常具有挑战性,因为它受到很多复杂因素的影响,例如交通网络的时空依赖性和序列突变性等问题.一些研究工作将卷积神经网络(convolutional neural networks, CNN)或循环神经网络(recurrent neural networks, RNN)用于交通流量预测建模.但是,直接使用经典的深度学习模型难以有效捕获与交通流相关的多通道多变量序列数据中的隐含时空依赖性特征.针对上述问题,提出了一种新的序列到序列时空注意力深度学习框架(spatial-temporal attention traffic forecasting, STATF)来处理城市交通流建模任务,它是一种基于卷积LSTM编码层和LSTM解码层,并辅助注意力机制的端到端深度学习模型,可以自适应地学习与城市交通流相关的多通道多变量时空序列数据中的时空依赖性和非线性相关性特征.基于3个真实的交通流数据集实验结果表明:不管是单步预测还是多步预测条件下,STATF模型都具有更优的预测性能.
参考文献
相关文章 3
[1] | 张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000. |
[2] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[3] | 刘洋. 神经机器翻译前沿进展[J]. 计算机研究与发展, 2017, 54(6): 1144-1149. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4240