删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种基于序列到序列时空注意力学习的交通流预测模型

本站小编 Free考研考试/2022-01-01

杜圣东1,李天瑞1,杨燕1,王浩1,谢鹏1,洪西进2
1(西南交通大学信息科学与技术学院 成都 610031);2(台湾科技大学计算机科学与信息工程系 台北 10607) (sddu@swjtu.edu.cn)
出版日期: 2020-08-01


基金资助:国家重点研发计划项目(2019YFB2101801);国家自然科学基金项目(61773324, 61976247)

A Sequence-to-Sequence Spatial-Temporal Attention Learning Model for Urban Traffic Flow Prediction

Du Shengdong1, Li Tianrui1, Yang Yan1, Wang Hao1, Xie Peng1, Horng Shi-Jinn2
1(School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031);2(Department of Computer Science and Information Engineering, Taiwan University of Science and Technology, Taipei 10607)
Online: 2020-08-01


Supported by:This work was supported by the National Key Research and Development Program of China (2019YFB2101801) and the National Natural Science Foundation of China (61773324, 61976247).




摘要/Abstract


摘要: 城市交通流预测是研究交通时空序列数据的动态演化并预测未来交通情况的关键技术,对于智能交通预警及管理决策来讲至关重要.但是有效的交通流建模非常具有挑战性,因为它受到很多复杂因素的影响,例如交通网络的时空依赖性和序列突变性等问题.一些研究工作将卷积神经网络(convolutional neural networks, CNN)或循环神经网络(recurrent neural networks, RNN)用于交通流量预测建模.但是,直接使用经典的深度学习模型难以有效捕获与交通流相关的多通道多变量序列数据中的隐含时空依赖性特征.针对上述问题,提出了一种新的序列到序列时空注意力深度学习框架(spatial-temporal attention traffic forecasting, STATF)来处理城市交通流建模任务,它是一种基于卷积LSTM编码层和LSTM解码层,并辅助注意力机制的端到端深度学习模型,可以自适应地学习与城市交通流相关的多通道多变量时空序列数据中的时空依赖性和非线性相关性特征.基于3个真实的交通流数据集实验结果表明:不管是单步预测还是多步预测条件下,STATF模型都具有更优的预测性能.






[1]张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000.
[2]李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392.
[3]刘洋. 神经机器翻译前沿进展[J]. 计算机研究与发展, 2017, 54(6): 1144-1149.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4240
相关话题/序列 数据 交通 计算机 城市

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 一种基于智能手机传感器数据的地图轮廓生成方法
    陶涛1,孙玉娥2,5,陈冬梅1,杨文建1,黄河1,3,罗永龙4,51(苏州大学计算机科学与技术学院江苏苏州215006);2(苏州大学轨道交通学院江苏苏州215131);3(中国科学技术大学苏州研究院江苏苏州215123);4(安徽师范大学计算机与信息学院安徽芜湖241002);5(网络与信息安全安 ...
    本站小编 Free考研考试 2022-01-01
  • 计算机体系结构前沿技术2020专题前言
    刘志勇1,窦勇21(中国科学院计算技术研究所北京100190);2(国防科技大学长沙410073)出版日期:2020-06-01Online:2020-06-01摘要/Abstract摘要:我们高兴地向读者推出本刊“计算机体系结构前沿技术”专题!本专题收录的6篇文章既包含不同技术领域和方向的综述,也 ...
    本站小编 Free考研考试 2022-01-01
  • 基于Spark的大数据访存行为跨层分析工具
    许丹亚1,王晶1,2,王利3,张伟功2,31(首都师范大学信息工程学院北京100048);2(高可靠嵌入式技术北京市工程研究中心(首都师范大学)北京100048);3(北京成像理论与技术高精尖创新中心(首都师范大学)北京100048)(xudanya@cnu.edu.cn)出版日期:2020-06- ...
    本站小编 Free考研考试 2022-01-01
  • 面向高通量计算机的图算法优化技术
    张承龙1,2,曹华伟1,王国波1,2,郝沁汾1,张洋1,叶笑春1,范东睿1,21(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院大学计算机与控制学院北京100049)(caohuawei@ict.ac.cn)出版日期:2020-06-01基金资助:国家重点 ...
    本站小编 Free考研考试 2022-01-01
  • 基于多视角RGB-D图像帧数据融合的室内场景理解
    李祥攀1,张彪1,孙凤池2,刘杰31(南开大学计算机学院天津300750);2(南开大学软件学院天津300750);3(南开大学人工智能学院天津300750)(xiangpan.li@qq.com)出版日期:2020-06-01基金资助:国家自然科学基金项目(61873327)IndoorScene ...
    本站小编 Free考研考试 2022-01-01
  • 基于Jacobi ADMM的传感网分布式压缩感知数据重构算法
    李国瑞1,孟婕1,彭三城2,王聪11(东北大学计算机科学与工程学院沈阳110819);2(广东外语外贸大学语言工程与计算实验室广州510006)(lgr@neuq.edu.cn)出版日期:2020-06-01基金资助:国家自然科学基金项目(61876205);中央高校基本科研业务费专项资金(N172 ...
    本站小编 Free考研考试 2022-01-01
  • 基于三尺度嵌套残差结构的交通标志快速检测算法
    李旭东,张建明,谢志鹏,王进(长沙理工大学计算机与通信工程学院长沙410114)(综合交通运输大数据智能处理湖南省重点实验室(长沙理工大学)长沙410114)(lxd@stu.csust.edu.cn)出版日期:2020-05-01基金资助:国家自然科学基金项目(61972056,618115303 ...
    本站小编 Free考研考试 2022-01-01
  • 2020数据驱动网络专题前言
    崔勇1,马华东2,陈凯3,俞敏岚4,刘洪强51(清华大学北京100084);2(北京邮电大学北京100876);3(香港科技大学香港999077);4(哈佛大学美国马萨诸塞州剑桥市02138);5(阿里巴巴杭州310023)出版日期:2020-04-01Online:2020-04-01摘要/Abs ...
    本站小编 Free考研考试 2022-01-01
  • 面向低维工控网数据集的对抗样本攻击分析
    周文1,3,张世琨2,丁勇4,陈曦51(北京大学软件与微电子学院北京100871);2(北京大学软件工程国家工程研究中心北京100871);3(中国航空油料集团有限公司北京100088);4(鹏城实验室广东深圳518000);5(中国软件测评中心北京100048)(zhou.wen@pku.edu. ...
    本站小编 Free考研考试 2022-01-01
  • 公交数据驱动的城市车联网转发机制
    唐晓岚,顼尧,陈文龙(首都师范大学信息工程学院北京100048)(tangxl@cnu.edu.cn)出版日期:2020-04-01基金资助:国家重点研发计划项目(2018YFB1800403);国家自然科学基金项目(61872252);北京市自然科学基金项目(4202012);北京市教委科技计划一 ...
    本站小编 Free考研考试 2022-01-01