1(中国科学技术大学计算机科学与技术学院 合肥 230027);2(新疆师范大学计算机科学技术学院 乌鲁木齐 830054);3(腾讯科技(北京)有限公司 北京 100080);4(天津大学管理经济学院 天津 300072) (ymchen16@mail.ustc.edu.cn)
出版日期:
2020-08-01基金资助:
国家自然科学基金项目( U1605251,61727809,61562087);新疆维吾尔自治区高校科研计划项目(XJEDU2016S068);新疆师范大学重点实验室课题(XJNUSYS102018B03)A Hierarchical Attention Mechanism Framework for Internet Credit Evaluation
Chen Yanmin1,2, Wang Hao1, Ma Jianhui1, Du Dongfang3, Zhao Hongke41(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027);2(School of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054);3(Tencent Inc, Beijing 100080);4(College of Management and Economics, Tianjin University, Tianjin 300072)
Online:
2020-08-01Supported by:
This work was supported by the National Natural Science Foundation of China (U1605251, 61727809, 61562087), the Scientific Program of the Higher Education Institution of Xinjiang (XJEDU2016S068), and the Xinjiang Normal University Key Laboratory Project (XJNUSYS102018B03).摘要/Abstract
摘要: 随着互联网的发展,基于用户信用的在线服务产品也越来越多地应用到各个领域.在这些信用数据中,除了传统的信贷数据,还包含用户网上消费数据等,因此如何利用这些数据来评估用户的信用等级是一个亟待解决的重要问题.之前的方法主要是基于信贷领域属性的研究,缺乏在互联网领域的研究,并且这些方法很少考虑用户的不同属性对其信用的不同的重要程度.因此,为了解决这些问题,提出一个基于层级注意力机制用户信用评估模型框架(HAM-UCE),模型首先构建用户信用画像,然后利用层级注意力机制在多个注意力层逐步获取更重要的用户属性特征,实现对用户信用等级的评估.实验结果表明该方法能够有效地实现对用户信用进行等级评估,能够比基准算法取得更好的性能.
参考文献
相关文章 15
[1] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[2] | 张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000. |
[3] | 李梦莹, 王晓东, 阮书岚, 张琨, 刘淇. 基于双路注意力机制的学生成绩预测模型[J]. 计算机研究与发展, 2020, 57(8): 1729-1740. |
[4] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[5] | 李曈, 马伟, 徐士彪, 张晓鹏. 适应立体匹配任务的端到端深度网络[J]. 计算机研究与发展, 2020, 57(7): 1531-1538. |
[6] | 张艺璇, 郭斌, 刘佳琪, 欧阳逸, 於志文. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展, 2020, 57(5): 984-995. |
[7] | 张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045. |
[8] | 程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. |
[9] | 尉桢楷, 程梦, 周夏冰, 李志峰, 邹博伟, 洪宇, 姚建民. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展, 2020, 57(11): 2456-2466. |
[10] | 王瑞琴,吴宗大,蒋云良,楼俊钢. 一种基于两阶段深度学习的集成推荐模型[J]. 计算机研究与发展, 2019, 56(8): 1661-1669. |
[11] | 张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524. |
[12] | 方荣强,王晶,姚治成,刘畅,张伟功. 多层神经网络算法的计算特征建模方法[J]. 计算机研究与发展, 2019, 56(6): 1170-1181. |
[13] | 石乐义,朱红强,刘祎豪,刘佳. 基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J]. 计算机研究与发展, 2019, 56(11): 2330-2338. |
[14] | 孙小婉,王英,王鑫,孙玉东. 面向双注意力网络的特定方面情感分析模型[J]. 计算机研究与发展, 2019, 56(11): 2384-2395. |
[15] | 史玉良,荣以平,朱伟义. 基于用电特征分析的窃电行为识别方法[J]. 计算机研究与发展, 2018, 55(8): 1599-1608. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4243