1(苏州经贸学院信息技术学院 江苏苏州 215009);2(浙江大学计算机科学与技术学院 杭州 310027);3(常熟理工学院 江苏常熟 215500) (plu2015@QQ.com)
出版日期: 2019-11-12基金资助:国家自然科学基金项目(61170124,61272258,61702055);江苏省自然科学基金项目(BK20151260);江苏省高等院校国内高级访问****计划项目(2018GRFX052);江苏省高校青蓝工程骨干教师培养对象(2019年)Person Re-identification by Cross-View Discriminative Dictionary Learning with Metric Embedding
Lu Ping1,2, Dong Husheng1, Zhong Shan3, Gong Shengrong31(School of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou, Jiangsu 215009);2(School of Computer Science and Technology, Zhejiang University, Hangzhou 310027);3(Changshu Institute of Technology, Changshu, Jiangsu 215500)
Online: 2019-11-12摘要/Abstract
摘要: 行人再识别是指在具有不重叠视域的摄像机监控网络中根据行人外观进行身份关联的任务.由于在视频监控系统中具有广泛的应用前景,受到了计算机视觉与机器学习领域的广泛关注.当前的行人再识别研究主要关注从行人图像中提取判别性的特征描述子或学习距离度量.然而不同摄像机视角下行人的外观常常存在很大差异,同一摄像机下还会有行人外观相近的情况,这使得特征描述子或距离度量的表达能力受到了很大的影响.为了增强它们的表达能力并提升行人再识别的准确率,提出了一种基于跨视角判别性词典嵌入的行人再识别算法.在该算法中不仅学习了跨视角的词典还同时联合学习了一个距离度量矩阵,从而将两者的优势结合起来.该算法模型有效地挖掘了不同视角下词典表达的内在联系与距离约束,从而能够使用学习到的表达能力更强的特征在嵌入子空间中进行行人再识别.为了避免不均衡训练样本带来的度量矩阵偏差问题,在度量矩阵的学习中还引入了自适应的权重分配策略.在模型优化上,采用了高效的交替优化方法来求解词典与距离度量等模型参数.在VIPeR,GRID,3DPeS等数据集上的实验结果表明本文算法取得了非常优秀的行人再识别性能.
参考文献
相关文章 3
| [1] | 权祯臻,陈松灿. 结合弱监督信息的凸聚类研究[J]. 计算机研究与发展, 2017, 54(8): 1763-1771. |
| [2] | 高 山 祖 辰 张道强. 一种基于约束的中垂面相似度准则[J]. , 2012, 49(11): 2283-2288. |
| [3] | 梁吉业, 白 亮, 曹付元,. 基于新的距离度量的K-Modes聚类算法[J]. , 2010, 47(10): 1749-1755. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4047
