1(上海市高可信计算重点实验室(华东师范大学) 上海 200062);2(鹏城实验室网络空间安全研究中心 广东深圳 518055);3(上海智能科学与技术研究院(同济大学) 上海 200092) (jzhou@sei.ecnu.edu.cn)
出版日期:
2019-10-16基金资助:
国家自然科学基金项目(61602180,61632012,61672239)Research Advances on Privacy Preserving in Recommender Systems
Zhou Jun1, Dong Xiaolei1, Cao Zhenfu1,2,31(Shanghai Key Laboratory of Trustworthy Computing (East China Normal University), Shanghai 200062);2(Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong 518055);3(Shanghai Institute of Intelligent Science and Technology (Tongji University), Shanghai 200092)
Online:
2019-10-16摘要/Abstract
摘要: 推荐系统是建立在海量数据挖掘基础之上的一种智能平台,根据用户个人信息与物品特征,比如用户的兴趣、历史购买行为和物品的材质、价格等,利用统计分析和机器学习等人工智能技术建立模型,预测用户对新物品的评价与喜好,从而向用户推荐其可能感兴趣的潜在物品,以实现个性化的信息服务和决策支持.然而,推荐系统的历史数据集、预测模型和推荐结果都与用户的隐私休戚相关,如何能在有效保护用户隐私的前提下,提供正确性可验证的有效推荐结果是一个具有挑战性的重要研究课题.国内外现有的工作多是通过数据扰动或公钥全同态加密技术来试图解决这个问题,但都无法满足推荐系统对高效性、精确性和各类隐私保护的要求.从推荐系统隐私保护的模式、安全模型、轻量级的推荐系统隐私保护一般性构造与推荐结果正确性可验证、可审计等方面,系统阐述了国内外最新研究成果,并在此基础上提出了存在问题、未来研究方向与解决方案.在安全模型方面,聚焦于标准模型或通用组合模型下,用户数据隐私、预测模型隐私和推荐结果隐私等多种安全模型的形式化刻画;在轻量化方面,将不依赖公钥全同态加密技术,通过减少公钥加密/解密次数(最优时一次),在单用户、多数据模型和多用户、多数据模型下,提出高效的推荐系统隐私保护一般性构造方法;最后,通过批量验证技术研究推荐结果轻量化防欺诈与抗抵赖的一般性理论问题.从而,为适用于推荐系统隐私保护的新型加密方案研究及其实用化提供理论和方法支撑.
参考文献
相关文章 15
[1] | 孟小峰, 刘立新. 基于区块链的数据透明化:问题与挑战[J]. 计算机研究与发展, 2021, 58(2): 237-252. |
[2] | 郑值, 徐童, 秦川, 廖祥文, 郑毅, 刘同柱, 童贵显. 基于多源情境协同感知的药品推荐[J]. 计算机研究与发展, 2020, 57(8): 1741-1754. |
[3] | 王会勇, 唐士杰, 丁勇, 王玉珏, 李佳慧. 生物特征识别模板保护综述[J]. 计算机研究与发展, 2020, 57(5): 1003-1021. |
[4] | 黄克振, 连一峰, 冯登国, 张海霞, 刘玉岭, 马向亮. 基于区块链的网络安全威胁情报共享模型[J]. 计算机研究与发展, 2020, 57(4): 836-846. |
[5] | 陈嘉颖, 于炯, 杨兴耀. 一种融合语义分析特征提取的推荐算法[J]. 计算机研究与发展, 2020, 57(3): 562-575. |
[6] | 曾义夫, 牟其林, 周乐, 蓝天, 刘峤. 基于图表示学习的会话感知推荐模型[J]. 计算机研究与发展, 2020, 57(3): 590-603. |
[7] | 王斌, 张磊, 张国印. 敏感渐进不可区分的位置隐私保护[J]. 计算机研究与发展, 2020, 57(3): 616-630. |
[8] | 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362. |
[9] | 黄海平, 张东军, 王凯, 朱毅凯, 王汝传. 带权值的大规模社交网络数据隐私保护方法[J]. 计算机研究与发展, 2020, 57(2): 363-377. |
[10] | 芦效峰, 廖钰盈, Pietro Lio, Pan Hui. 一种面向边缘计算的高效异步联邦学习机制[J]. 计算机研究与发展, 2020, 57(12): 2571-2582. |
[11] | 王涛春, 金鑫, 吕成梅, 陈付龙, 赵传信. 移动群智感知中融合数据的隐私保护方法[J]. 计算机研究与发展, 2020, 57(11): 2337-2347. |
[12] | 周俊, 沈华杰, 林中允, 曹珍富, 董晓蕾. 边缘计算隐私保护研究进展[J]. 计算机研究与发展, 2020, 57(10): 2027-2051. |
[13] | 林玥, 刘鹏, 王鹤, 王文杰, 张玉清. 网络安全威胁情报共享与交换研究综述[J]. 计算机研究与发展, 2020, 57(10): 2052-2065. |
[14] | 魏立斐, 陈聪聪, 张蕾, 李梦思, 陈玉娇, 王勤. 机器学习的安全问题及隐私保护[J]. 计算机研究与发展, 2020, 57(10): 2066-2085. |
[15] | 冯琦, 何德彪, 罗敏, 李莉. 移动互联网环境下轻量级SM2两方协同签名[J]. 计算机研究与发展, 2020, 57(10): 2136-2146. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4018