删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多示例学习下的深度森林架构

本站小编 Free考研考试/2022-01-01

任婕,侯博建,姜远
(计算机软件新技术国家重点实验室(南京大学) 南京 210023) (软件新技术与产业化协同创新中心(南京大学) 南京 210023) (renj@lamda.nju.edu.cn)
出版日期: 2019-08-01


基金资助:国家自然科学基金项目(61673201)

Deep Forest for Multiple Instance Learning

Ren Jie, Hou Bojian, Jiang Yuan
(National Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023) (Collaborative Innovation Center of Novel Software Technology and Industrialization (Nanjing University), Nanjing 210023)
Online: 2019-08-01







摘要/Abstract


摘要: 多示例学习已经广泛地应用到各个领域,如图像检索、文本分类、人脸识别等.而近年来深度神经网络也成功地运用到各个任务和问题上,MI-Nets是深度神经网络在多示例学习领域一个成功的应用.虽然MI-Nets很成功,但其主要在图像相关的任务上表现突出,而在非图像任务比如文本分类任务上的性能并不令人满意.而最近2年兴起的深度森林在非图像任务上取得了较好的成绩,并因为其相对于深度神经网络有较少的参数和较稳定的性能而受到青睐.所以用深度森林来提升多示例学习性能具有可行性.但由于深度森林结构的限制,并不能把组成深度森林的每一个森林都直接替换成包级别的森林,需要修改深度森林的结构来达到目的.提出了一种新的深度森林架构MIDF.在该架构下,为了使得中间层的输出分布可以和包中的示例拼接成功,拼接时把包里的每个示例都看作是一个包,从而使得级联结构依然有效.另外,还能自动确认深度森林的层数.实验结果表明:该方法在图像任务上的性能与擅长处理图像任务的MI-Nets相当;而在文本数据上,该方法取得了比MI-Nets和其他基线算法更好的效果.






[1]吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
[2]陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280.
[3]张永, 陈蓉蓉, 张晶. 基于交叉熵的安全Tri-training算法[J]. 计算机研究与发展, 2021, 58(1): 60-69.
[4]于畅, 王雅文, 林欢, 宫云战. 基于故障检测上下文的等价变异体识别算法[J]. 计算机研究与发展, 2021, 58(1): 83-97.
[5]李双峰. TensorFlow Lite:端侧机器学习框架[J]. 计算机研究与发展, 2020, 57(9): 1839-1853.
[6]陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986.
[7]丁成诚, 陶蔚, 陶卿. 一种三参数统一化动量方法及其最优收敛速率[J]. 计算机研究与发展, 2020, 57(8): 1571-1580.
[8]贺一笑, 庞明, 姜远. 蒙德里安深度森林[J]. 计算机研究与发展, 2020, 57(8): 1594-1604.
[9]刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649.
[10]李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
[11]陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507.
[12]蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953.
[13]刘辰屹, 徐明伟, 耿男, 张翔. 基于机器学习的智能路由算法综述[J]. 计算机研究与发展, 2020, 57(4): 671-687.
[14]王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698.
[15]周文, 张世琨, 丁勇, 陈曦. 面向低维工控网数据集的对抗样本攻击分析[J]. 计算机研究与发展, 2020, 57(4): 736-745.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3985
相关话题/计算机 图像 结构 数据 南京大学