1(高可信软件技术教育部重点实验室(北京大学) 北京 100871); 2(北京大学信息科学技术学院 北京 100871); 3(北京大学软件工程国家工程研究中心 北京 100871); 4(密苏里科技大学计算机科学系 美国密苏里州罗拉 65409); 5(计算机网络和信息集成教育部重点实验室(东南大学) 南京 210018) (wangfeng2013@pku.edu.cn)
出版日期:
2019-03-01基金资助:
国家自然科学基金项目(61772045)Mental Stress Assessment Approach Based on Smartphone Sensing Data
Wang Feng1,2,5, Wang Yasha1,3, Wang Jiangtao1,2, Xiong Haoyi4, Zhao Junfeng1,2, Zhang Daqing1,21(Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871); 2(School of Electronics Engineering and Computer Science, Peking University, Beijing 100871); 3(National Research Center of Software Engineering, Peking University, Beijing 100871); 4(Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA 65409); 5(Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210018)
Online:
2019-03-01摘要/Abstract
摘要: 较大的心理压力对大学生的心理和生理均会产生危害.心理压力往往在前期容易被人忽视,从而导致严重的问题.因此,如果能较早发现心理压力,并进行合理干预,有益于人的身心健康.传统心理压力检测方法以问卷调查和借助专业设备的评估为主,但都存在成本较高,且对被评估对象侵扰较大等不足.另一方面,随着智能手机的快速普及,通过手机中内置的位置、声音、加速度等多种传感器感知用户的行为习惯,并基于感知数据评估用户心理压力成为一种低成本、低侵扰的心理压力评估手段.在此背景下,针对基于智能手机感知数据分析,对评估大学生心理压力的方法展开了研究,从感知数据中提取合理的特征,提出了一种更高效的心理压力评估方法.首先,讨论了如何从原始的手机感知数据提取出合理的特征;其次,介绍将心理压力评估转化为分类问题,并使用半监督学习方法构造分类模型;最后,在开放数据集StudentLife上对上述模型进行实验验证.实现结果表明:该方法在心理压力检测精确度和召回率等方面均优于基线方法.
参考文献
相关文章 15
[1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[2] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[3] | 于畅, 王雅文, 林欢, 宫云战. 基于故障检测上下文的等价变异体识别算法[J]. 计算机研究与发展, 2021, 58(1): 83-97. |
[4] | 李双峰. TensorFlow Lite:端侧机器学习框架[J]. 计算机研究与发展, 2020, 57(9): 1839-1853. |
[5] | 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986. |
[6] | 丁成诚, 陶蔚, 陶卿. 一种三参数统一化动量方法及其最优收敛速率[J]. 计算机研究与发展, 2020, 57(8): 1571-1580. |
[7] | 贺一笑, 庞明, 姜远. 蒙德里安深度森林[J]. 计算机研究与发展, 2020, 57(8): 1594-1604. |
[8] | 郑值, 徐童, 秦川, 廖祥文, 郑毅, 刘同柱, 童贵显. 基于多源情境协同感知的药品推荐[J]. 计算机研究与发展, 2020, 57(8): 1741-1754. |
[9] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
[10] | 陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. |
[11] | 蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. |
[12] | 刘辰屹, 徐明伟, 耿男, 张翔. 基于机器学习的智能路由算法综述[J]. 计算机研究与发展, 2020, 57(4): 671-687. |
[13] | 周文, 张世琨, 丁勇, 陈曦. 面向低维工控网数据集的对抗样本攻击分析[J]. 计算机研究与发展, 2020, 57(4): 736-745. |
[14] | 王艳, 李念爽, 王希龄, 钟凤艳. 编码技术改进大规模分布式机器学习性能综述[J]. 计算机研究与发展, 2020, 57(3): 542-561. |
[15] | 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3891