1(山东财经大学计算机科学与技术学院 济南 250014); 2(山东省数字媒体技术重点实验室 济南 250014); 3(山东省高校经济运行动态仿真重点实验室 济南 250014); 4(山东大学数学学院 济南 250100) (fan_qinglan@163.com)
出版日期:
2018-03-01基金资助:
国家自然科学基金项目(61373080,61672018,61402261,U1609218);山东省重点研发计划项目(2016GSF120013);山东省高等学校优势学科人才团队培育计划An Region Adaptive Image Interpolation Algorithm Based on the NSCT
Fan Qinglan1,2,3, Zhang Yunfeng1,2,3, Bao Fangxun4, Shen Xiaohong1,2,3, Yao Xunxiang1,2,31(School of Computer Science & Technology, Shandong University of Finance and Economics, Jinan 250014); 2(Shandong Provincial Key Laboratory of Digital Media Technology, Jinan 250014); 3(Economic Operation and Dynamic Simulation Key Laboratory of Shandong Colleges and Universities, Jinan 250014); 4(School of Mathematics, Shandong University, Jinan 250100)
Online:
2018-03-01摘要/Abstract
摘要: 提出一种基于非下采样轮廓波变换(nonsubsampled contourlet transform, NSCT)的分区域自适应插值算法,将图像划分为不同区域,相应地采用不同的方法实现图像插值.首先,构造了一类有理函数插值模型,分析了其C\+2连续性条件,给出了误差估计.其次,通过NSCT捕获到图像的边缘轮廓信息,利用其高频信息的统计特性设定阈值,根据阈值将图像自适应地划分为边缘区域和非边缘区域.最后,边缘区域采用新的基于边缘指导的插值(new edge-directed interpolation, NEDI)模型,非边缘区域采用C\+2连续有理函数模型插值,进而得到目标图像.实验结果证明:提出的基于NSCT的区域自适应插值算法与当前经典插值算法相比,在处理图像纹理细节和边缘方面具有明显优势,同时获得了较好的客观评价数据,且时间复杂度较低.
参考文献
相关文章 15
[1] | 谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435. |
[2] | 周航, 詹永照, 毛启容. 基于时空融合图网络学习的视频异常事件检测[J]. 计算机研究与发展, 2021, 58(1): 48-59. |
[3] | 胡晓艳, 童钟奇, 徐恪, 张国强, 郑少琦, 赵丽侠, 程光, 龚俭. 命名数据网络中的视频传输研究综述[J]. 计算机研究与发展, 2021, 58(1): 116-136. |
[4] | 刘思, 张德干, 刘晓欢, 张婷, 吴昊. 一种基于判定区域的AODV路由的自适应修复算法[J]. 计算机研究与发展, 2020, 57(9): 1898-1910. |
[5] | 李德权, 许月, 薛生. 基于动态约束自适应方法抵御高维鞍点攻击[J]. 计算机研究与发展, 2020, 57(9): 2001-2008. |
[6] | 刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. |
[7] | 朱颖雯, 陈松灿. 基于随机投影的高维数据流聚类[J]. 计算机研究与发展, 2020, 57(8): 1683-1696. |
[8] | 邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459. |
[9] | 贾颖霞, 郎丛妍, 冯松鹤. 基于类别相关的领域自适应交通图像语义分割方法[J]. 计算机研究与发展, 2020, 57(4): 876-887. |
[10] | 舒坚, 高素, 陈宇斌. 基于自适应广义回归神经网络的链路质量评估[J]. 计算机研究与发展, 2020, 57(12): 2662-2672. |
[11] | 吴桦,王凌,程光. 基于DASH流媒体的TCP拥塞控制算法优化[J]. 计算机研究与发展, 2019, 56(9): 1965-1976. |
[12] | 郭亚庆,王文剑,苏美红. 一种针对异常点的自适应回归特征选择方法[J]. 计算机研究与发展, 2019, 56(8): 1695-1707. |
[13] | 刘昊霖,池金龙,邓清勇,彭鑫,裴廷睿. 基于自适应局部搜索的进化多目标稀疏重构方法[J]. 计算机研究与发展, 2019, 56(7): 1420-1431. |
[14] | 席亮,王勇,张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. |
[15] | 施亚虎,石海龙,崔莉. EasiDARM:基于分布式的物联网设备自适应注册方法[J]. 计算机研究与发展, 2019, 56(3): 453-466. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3657