删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

CPU和DRAM加速任务划分方法:大数据处理中Hash Joins的加速实例

本站小编 Free考研考试/2022-01-01

吴林阳, 罗蓉, 郭雪婷, 郭崎
(中国科学院计算技术研究所 北京 100190) (wulinyang@ict.ac.cn)
出版日期: 2018-02-01


基金资助:国家重点研发计划项目(2017YFB1003101);国家自然科学基金项目(61472396,61432016,61473275,61522211,61532016,61521092,61502446,61672491,61602441,61602446,61732002,61702478);北京市科技计划项目(Z151100000915072);中科院STS计划项目;国家“九七三”重点基础研究发展计划基金项目(2015CB358800)

Partitioning Acceleration Between CPU and DRAM: A Case Study on Accelerating Hash Joins in the Big Data Era

Wu Linyang, Luo Rong, Guo Xueting, Guo Qi
(Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190)
Online: 2018-02-01







摘要/Abstract


摘要: 硬件加速器能够有效地提高当前计算机系统的能效.然而,传统的硬件加速器(如GPU,FPGA和定制的加速器)和内存是相互分离的,加速器和内存之间的数据移动难以避免,这使得如何降低加速器和内存之间数据移动的开销成为极具挑战性的问题.随着靠近数据的处理技术(near-data processing)和3D堆叠DRAM的出现,我们能够将硬件加速器集成到3D堆叠DRAM中,使得数据移动的开销大大降低.然而,由于3D堆叠DRAM对面积、功耗和散热具有严格的限制,所以不可能将一个功能复杂的硬件加速器完整地集成到DRAM中.因此,在设计内存端的硬件加速器时,应该考虑将加速任务在CPU和加速器之间合理地进行划分.以加速大数据系统中的一个关键操作hash joins为例子,阐述了CPU和内存端加速任务划分的设计思想.以减少数据移动为出发点,设计了一个包含内存端定制加速器和处理器端SIMD加速单元的混合加速系统,并对应用进行分析,将加速任务划分到不同的加速器.其中,内存端的加速器用于加速数据移动受限的执行阶段,而处理器端SIMD加速单元则用于加速数据移动开销较低成本的执行阶段.实验结果表明:与英特尔的Haswell处理器和Xeon Phi相比,设计的混合加速系统的能效分别提升了47.52倍和19.81倍.此外,提出的以数据移动为驱动的方法很容易扩展于指导其他应用的加速设计.






[1]蒲勇霖, 于炯, 鲁亮, 李梓杨, 国冰磊, 廖彬. 基于Storm平台的数据恢复节能策略[J]. 计算机研究与发展, 2021, 58(3): 479-496.
[2]林霄, 姬硕, 岳胜男, 孙卫强, 胡卫生. 面向跨数据中心网络的节点约束存储转发调度方法[J]. 计算机研究与发展, 2021, 58(2): 319-337.
[3]杨帆, 张鹏, 王展, 元国军, 安学军. 基于在网计算加速的拜占庭容错算法[J]. 计算机研究与发展, 2021, 58(1): 164-177.
[4]郭进阳, 邵传明, 王靖, 李超, 朱浩瑾, 过敏意. FPGA图计算的编程与开发环境:综述和探索[J]. 计算机研究与发展, 2020, 57(6): 1164-1178.
[5]许丹亚, 王晶, 王利, 张伟功. 基于Spark的大数据访存行为跨层分析工具[J]. 计算机研究与发展, 2020, 57(6): 1179-1190.
[6]申毅杰, 曾丹, 熊劲. 基于收益模型的Spark SQL数据重用机制[J]. 计算机研究与发展, 2020, 57(2): 318-332.
[7]赵慧慧, 赵凡, 陈仁海, 冯志勇. 基于地理空间大数据的高效索引与检索算法[J]. 计算机研究与发展, 2020, 57(2): 333-345.
[8]陈叶旺, 申莲莲, 钟才明, 王田, 陈谊, 杜吉祥. 密度峰值聚类算法综述[J]. 计算机研究与发展, 2020, 57(2): 378-394.
[9]胡学钢, 刘菲, 卜晨阳. 教育大数据中认知跟踪模型研究进展[J]. 计算机研究与发展, 2020, 57(12): 2523-2546.
[10]艾科,马国帅,杨凯凯,钱宇华. 一种基于集成学习的科研合作者潜力预测分类方法[J]. 计算机研究与发展, 2019, 56(7): 1383-1395.
[11]高腾飞,刘勇琰,汤云波,张垒,陈丹. 面向时间序列大数据海量并行贝叶斯因子化分析方法[J]. 计算机研究与发展, 2019, 56(7): 1567-1577.
[12]左鹏飞,华宇,谢新锋,胡杏,谢源,冯丹. 面向深度学习加速器的安全加密方法[J]. 计算机研究与发展, 2019, 56(6): 1161-1169.
[13]方荣强,王晶,姚治成,刘畅,张伟功. 多层神经网络算法的计算特征建模方法[J]. 计算机研究与发展, 2019, 56(6): 1170-1181.
[14]向陶然,叶笑春,李文明,冯煜晶,谭旭,张浩,范东睿. 基于细粒度数据流架构的稀疏神经网络全连接层加速[J]. 计算机研究与发展, 2019, 56(6): 1192-1204.
[15]王悦,樊凯. 隐藏访问策略的高效CP-ABE方案[J]. 计算机研究与发展, 2019, 56(10): 2151-2159.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3630
相关话题/计算机 数据 计算 设计 系统