删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

植物所科研人员揭示生物钟调控植物光周期依赖性生长的新机制

本站小编 Free考研/2020-05-23

陆生开花植物自种子破土而出开始,便需要对生存环境中昼夜节律性的光温环境信号变化不断做出适当反应,以增强对环境的适应性。生物钟对于植物感知光周期变化并以此决定不同光周期条件下的昼夜节律性生长动态具有重要作用。双子叶植物幼苗的下胚轴在光周期条件下显示出强劲的生长节律,而且下胚轴的长度与日长呈负相关,这一现象长期以来被认为是由生物钟与光信号协调而决定的,但生物钟如何感知光周期并决定光周期依赖性生长的分子机制目前仍不清楚。
  光敏色素互作蛋白(Phytochrome Interacting Factors, PIFs)转录因子在调控植物下胚轴生长过程中发挥着关键作用,而PRRs基因家族的成员(包括TOC1PRR3PRR5PRR7PRR9)是植物生物钟中央振荡器的核心组分,它们的功能缺失会呈现光周期依赖性的长下胚轴表型,说明它们在光周期感知过程中同样发挥着重要作用。此前的研究发现生物钟另一关键组分——晚转录抑制复合体(Evening Complex, EC)在晚间会抑制PIF4/5的转录,使植物下胚轴的生长速度在黎明时达到峰值。本研究通过获得PRRs与EC的遗传杂交材料,发现它们在调节光周期调控的下胚轴生长过程中具有叠加效应。进一步研究发现光周期可以改变PRRs蛋白的表达时相和持续时间,在长日照条件下,PRRs蛋白表达的时间窗口得以延长和转移。通过生物信息学分析,结合生物化学和分子生物学证据,发现PIF4PIF5是PRRs蛋白和EC的共同直接靶基因,PRRs蛋白可以结合PIF4/5的启动子并抑制其转录。先前研究也表明PRRs蛋白可以直接与PIFs蛋白互作并干扰它们对下游基因的转录调控,为进一步探究PRRs蛋白对PIF4/5的转录抑制在下胚轴生长调控中的必要性,本研究将TOC1的DNA结合结构域进行点突变或删除,发现它们虽不影响与PIF4/5蛋白的相互作用,但过表达材料在短日照条件仍呈现长下胚轴表型,充分表明了PRRs的转录调控功能对于调节特定光周期条件下的生长至关重要。最后,遗传学分析发现PIF4PIF5在光周期调控下胚轴生长过程中对PRRs具有遗传上位性。综上,本研究发现了光周期通过影响PRRs蛋白的表达时相,与EC复合体协同调控PIFs转录的时间窗口,进而决定下胚轴的光周期依赖性生长动态,以适应生存环境的光周期,使植物达到最佳适应性。
  该研究成果于2020年3月12日在线发表于国际学术期刊Plant Physiology。中科院植物所在读博士研究生李娜和张媛媛副研究员为本论文的共同第一作者,王雷研究员为通讯作者。该研究得到了国家自然科学基金面上项目、中科院战略性先导科技专项B类项目、中科院前沿科学重点研究项目以及中科院青促会等项目的资助。
  文章链接:
  http://www.plantphysiol.org/content/early/2020/03/12/pp.19.01599
  (分子生理实验室供稿)
  
  PRRs-PIF4/5调控光周期依赖性下胚轴生长
A, 韦恩图显示TOC1、PRR5和PRR7共同结合的靶基因;热图显示在toc1 prr5lux-6突变体中上调的差异表达基因(DEGs)中有4个是TOC1、PRR5和PRR7共同结合的靶基因;B, 烟草的瞬时转录表达实验表明TOC1和PRR5蛋白能够抑制PIF4proLUCPIF5proLUC的表达;C, 短日照条件下野生型(C24)和TOC1的DNA结合结构域点突变(A562V)的突变体(toc1-1)的下胚轴表型;D, 短日照条件和长日照条件下toc1-21 pif4-2toc1-21 prr5-1 pif4toc1-21 prr5-1 pif4-2 pif5-3的下胚轴表型的统计分析;E, PRR蛋白通过直接调控PIF4PIF5转录以介导生物钟调控下胚轴的光周期依赖性生长的工作模型。
相关话题/植物 基因

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 植物所科研人员揭示冬季增雪对温带草地群落稳定性和生态系统功能的调控机制
    干旱和半干旱草地生态系统中,水分是调控植物生产力、物种组成以及群落稳定性的关键因素,而冬季降雪是下一年植物生长早期的重要水分来源。受气候变化影响,我国半干旱和干旱地区冬季降雪呈现上升趋势,但冬季降雪的变化对于生长季群落结构及生态系统功能的影响机制却尚不清楚。  中科院植物所刘玲莉研究组以内蒙古温带典 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员发现相分离驱动叶绿体内蛋白分选的新机制
    高等植物的叶绿体是十亿年前蓝藻被真核生物吞噬后经内共生演化而来,共有3000个左右的蛋白,其中95%以上由核基因编码。核基因编码的叶绿体蛋白在细胞质中合成后,通过叶绿体内、外被膜和类囊体膜转运通道运输到叶绿体内的不同区域使叶绿体行使光合作用功能。因此,研究叶绿体蛋白跨膜运输方式对于探讨叶绿体的生物发 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研成果上榜2019年度中国科学十大进展
    2月27日,科学技术部高技术研究发展中心在京发布2019年度中国科学十大进展。中科院植物所的研究成果“破解藻类水下光合作用的蛋白结构和功能”从终选的4个学科组共30个候选进展中脱颖而出,成功入选。  这一成果率先破解了硅藻、绿藻光合膜蛋白超分子结构和功能之谜,不仅对揭示自然界光合作用的光能高效转化机 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员阐明驱动CBL和CIPK基因家族互作产物间剂量平衡的进化策略
    重复基因可通过全基因组加倍、串联重复、逆转录转座等机制形成,为生物新功能和新性状的产生提供了原始遗传材料,通常被认为是进化的加速器。基因组加倍或多倍化,同时复制基因组中所有的基因,是重复基因的一个重要来源。多项研究表明,多倍化后重复基因的保留具有偏好性,且与基因的功能密切相关。特别是一些参与编码大分 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员揭示叶绿体核糖体RNA甲基化修饰的机制和功能
    核糖体RNA(rRNA)的甲基化修饰是生物界中普遍存在的一种转录后修饰机制,可以改变rRNA分子的局部空间结构,从而优化核糖体的蛋白翻译效率。不同物种之间的rRNA甲基化程度存在明显差别,是rRNA进化的标志性事件之一。叶绿体是高等植物中重要的细胞器,由蓝细菌经过内共生过程演化而来,具有自己的核糖体 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员在灌丛化草原生态系统土壤碳库变化方面取得新进展
    由于全球气候变化和人类活动影响,灌丛化现象在世界干旱-半干旱地区广泛发生,并深刻影响了区域碳循环。早前研究多关注灌丛化对草原生态系统的生物量和土壤有机碳储量的影响,而忽视了对于土壤无机碳库的影响。同时有研究表明,一些地区草原灌丛化导致土壤酸化,进而影响这些地区的无机碳储量,但灌丛化对土壤无机碳的影响 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员在亚洲季风与青藏高原花粉沉积耦合机制方面取得新进展
    众多证据表明,青藏高原隆升制约着亚洲季风系统的演化。花粉作为可以随风传播的重要媒体,有极大潜力可以发展成为衡量季风活动的风力和方向的代用指标,用于青藏高原上的古季风活动的检测和评估。因此,有必要建立对现代花粉沉降模式的正确认识。然而,前人的研究仅关注了青藏高原表土孢粉沉降与区域植被的耦合及建立花粉- ...
    本站小编 Free考研 2020-05-23
  • 植物所研究人员揭示树木冠层构型的空间变异性及其对气候条件的适应机制
    树木冠层构型是枝干在空间上的分配方式,其与叶片和主干性状共同定义了一棵树的空间表现形式和特点。冠层构型可以调节树木冠层对光的截留并最终影响树木的碳水循环过程,其时空变异性反映了树木生长过程中的竞争机制以及对气候条件变化的防御机制。因此,深入探讨冠层构型的时空变异性及其影响因素是进一步理解树木生长在全 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员发布第一个高质量角苔参考基因组
    苔藓类包括苔、藓和角苔三大分支,是现存最早的陆生植物,代表了植物演化过程中从水生到陆生的过渡类群。长久以来关于早期陆地植物的起源与植物登陆一直存在诸多争论和未解之谜。近年来,人们利用组学数据将早期陆地植物的系统位置争论聚焦到了角苔类上。角苔类以其难解的系统位置,衍生与原始兼具的形态特征,及与细菌和真 ...
    本站小编 Free考研 2020-05-23
  • 植物所科研人员应邀撰写微藻产氢综述文章
    随着生产力的快速发展和现代化水平的不断提高,全球能源消费急剧上升,导致全球能源危机和能源价格上涨,寻找可替代的能源变得尤为重要。氢气是一种理想的清洁可再生能源,具有巨大的商业潜力,利用生物氢作为能源已经在许多领域得到应用,因此许多科学研究一直致力于通过各种手段提高生物氢的产量。微藻是一种兼性好氧生物 ...
    本站小编 Free考研 2020-05-23