删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

A finite difference method for solving nonlinear Volterra integral equation

本站小编 Free考研考试/2021-12-25

苟斐斐1,2, 刘建军3, 刘卫东2, 罗莉涛1,2
1. 中国科学院大学, 北京 100049;
2. 中国科学院渗流流体力学研究所, 河北 廊坊 065007;
3. 西南石油大学, 成都 610550
摘要: 研究一类典型的伏尔泰拉积分方程的数值求解方法.通过数值差分离散积分方程,然后将积分方程演化为非线性代数方程组,通过迭代推进求解此类积分方程.分析这种求解方法的代数精度,证明此数值解法的精度高达Δt2阶,可以满足工程计算需要.通过数值仿真验证,数值解与解析解的误差为10-5.如果采用更高阶的数值积分离散方式,可以获得更高阶精度.
关键词: 伏尔泰拉积分方程非线性数值差分方法误差分析
The Volterra integral equation of the second kind is a special type of integral equations and is often evolved in many engineering domains such as petrol industry. Many methods have been established for solving this kind of equation. Yusufoglu[1-2] solved systems of the integral equations using the homotopy perturbation and the Lagrange method. Huang et al.[3] used the Taylor expansion method and obtained an approximate solution. Yang[4] used the Chebyshev polynomials method to solve the equation,while Yousefi[5] presented a numerical method for the Abel integral equation by Legendre wavelets. Khodabin et al.[6] numerically gained the solution of the stochastic Volterra integral equations using triangular functions and their operational matrix of integration. Kamyad et al.[7] proposed an algorithm based on the calculus of variations and discretization method to solve linear and nonlinear Volterra integral equations. The domain de-composition [8-10] was proposed for obtaining the approximate analytic solution of the integral equation.
The integral equation involved in this paper stems from the description of pressure distribution in oil and gas development,and it is given in Eq.(1),
$u\left( t \right)=g\left( t \right)+\int\limits_{0}^{t}{K\left( t-\tau \right)}F\left[ u\left( \tau \right) \right]d\tau ,$ (1)
where the source function g(t) is given and the kernel function K(t) and function F(u) are known to be continuous functions. Function u(t) needs to be determined.
Since the function g(t) is not necessarily zero,this kind of integral equations are generally regarded as non-homogeneous equations. In addition,the transformation of the unknown function by F-function increases the nonlinear degree of the problem. The difficulty in solving this kind of equation numerically is to discrete the integral upper limit and the integral expression synchronously.
1 Discretization of the integral equationIt is obvious in Eq.(1) that,when t=0,u(0) is equal to zero. Based on this fact,a method is proposed by converting the original equation into ordinary differential equation with initial value by derivation and then solving the differential equation. The derivation of the original equation is expressed in Eq.(2),
$\frac{du}{dt}=\frac{dg}{dt}+\frac{d}{dt}\int\limits_{0}^{t}{K\left( t-\tau \right)}F\left[ u\left( \tau \right) \right]d\tau .$ (2)
Practice shows that there is no explicit derivation for this kind of equation,in which convolution is invo-lved. So,the way to the solution goes as following.
If we define that ti=iΔt (i=0,1,2,…,N) and f(ti)=f(iΔt)=fi we can express the discretization of Eq.(1) in Eq.(4)
$u\left( t \right)=g\left( t \right)+\int\limits_{0}^{t}{K\left( t-\tau \right)}F\left[ u\left( \tau \right) \right]d\tau ,$ (3)
${{u}_{i}}={{g}_{i}}+\int\limits_{0}^{t}{K\left( {{t}_{i}}-\tau \right)}F\left[ u\left( \tau \right) \right]d\tau .$ (4)
And then new designation is defined as
${{\varphi }^{i}}\left( \tau \right)=K\left( {{t}_{i}}-\tau \right)F\left[ u\left( \tau \right) \right],$ (5)
${{Q}_{i}}=\int\limits_{0}^{{{t}_{i}}}{{{\varphi }^{i}}\left( \tau \right)}d\tau ,$ (6)
$u\left( {{t}_{i}} \right)=g\left( {{t}_{i}} \right)+Q\left( {{t}_{i}} \right)$ (7)
where Qi can be expanded with composite integral formula. Different expansion approaches can be used to get the desirable accuracy. In this paper,composite trapezoidal formula is used. So,Qi can be expanded as following
$\begin{align} &{{Q}_{i}}\approx \Delta t\sum\limits_{k=0}^{i-1}{\frac{{{\varphi }^{i}}\left( {{t}_{k}} \right)+{{\varphi }^{i}}\left( {{t}_{k+1}} \right)}{2}} \\ &=\Delta t\left( \frac{{{\varphi }^{i}}\left( {{t}_{0}} \right)+{{\varphi }^{i}}\left( {{t}_{i}} \right)}{2}+\sum\limits_{k=0}^{i-1}{{{\varphi }^{i}}\left( {{t}_{k}} \right)} \right). \\ \end{align}$ (8)
Defining
$\varphi _{k}^{i}={{\varphi }^{i}}\left( {{t}_{k}} \right)=K\left( {{t}_{i}}-{{t}_{k}} \right)F\left[ {{u}_{k}} \right]$ (9)
and substituting Eq.(8) into Eq.(7),we get
${{u}_{i}}={{g}_{i}}+{{Q}_{i}}={{g}_{i}}+\Delta t\left( \frac{\varphi _{0}^{i}+\varphi _{i}^{i}}{2}+\sum\limits_{k=1}^{i-1}{\varphi _{k}^{i}} \right).$ (10)
Defining
${{P}_{i}}={{u}_{i}}-\Delta t\frac{\varphi _{i}^{i}}{2}={{u}_{i}}-\Delta t\frac{F\left( 0 \right)F\left( {{u}_{i}} \right)}{2}$ (11)
and substituting Eq.(10) into Eq.(11),we get
${{P}_{i}}={{g}_{i}}+\Delta t\left( \frac{F\left( {{t}_{i}} \right)F\left( {{u}_{0}} \right)}{2}+\sum\limits_{k=1}^{i-1}{K\left( {{t}_{i}}-{{t}_{k}} \right)F\left[ {{u}_{k}} \right]} \right)$ (12)
Since g-function and k-function are known,we can determine the value of Pi using Eq.(12) if new designation Ui-1=[u0,u1,…,ui-1] is known. Then we substitute the known Pi into Eq.(11) to solve the value of ui.
2 Algorithm and convergence analysisBased on the discretization mentioned above,the specific iteration procedure is as following.
When i=0, then,Q0=0,u0=g0.
When i=1, according to Eq.(10),we have
${{P}_{1}}={{g}_{1}}+\Delta t\frac{K\left( {{t}_{1}} \right)F\left( {{u}_{0}} \right)}{2}$ (13)
Introducing P1 into Eq.(13),the value of u1 can be obtained by using the following equation:
${{P}_{1}}={{u}_{1}}-\Delta t\frac{K\left( 0 \right)F\left( {{u}_{1}} \right)}{2}$ (14)
When i=2, by introducing U1=[u0,u1] into Eq.(12),we obtain
${{P}_{2}}={{g}_{2}}+\Delta t\left( \frac{K\left( {{t}_{2}} \right)F\left( {{u}_{0}} \right)}{2}+K\left( {{t}_{2}}-{{t}_{1}} \right)F\left[ {{u}_{1}} \right] \right).$ (15)
And then substituting P2 into Eq.(11),we get
${{P}_{2}}={{u}_{2}}-\Delta t\frac{K\left( 0 \right)F\left( {{u}_{2}} \right)}{2}.$ (16)
Solving the above equation,we get the value of u2 which means that U2=[u0,u1,u2] is available.
When i=n, substituting Un-1=[u0,u1,…,un-1] into Eq.(12),we obtain
$\begin{align} &{{P}_{n}}={{g}_{n}}+\Delta t \\ &\left( \frac{K\left( {{t}_{n}} \right)F\left( {{u}_{0}} \right)}{2}+\sum\limits_{k=0}^{i-1}{K\left( {{t}_{n}}-{{t}_{k}} \right)}F\left[ {{u}_{k}} \right] \right) \\ \end{align}$ (17)
Then we get the following equation by introducing Pn into Eq.(11),and we get the expression of Pn,
${{P}_{n}}={{u}_{n}}-\Delta t\frac{K\left( 0 \right)F\left( {{u}_{n}} \right)}{2}.$ (18)
Solving the above equation,we get the value of un which means that Un=[u0,u1,u2,…,un] is available.
The error in this numerical solution rises from the numerical integration in Eq.(8) and the accumulation of error in Eq.(12). The kernel function and F-function are continuous in the solving interval [a,b]. If the second-order derivatives of φ(x) are continuous in the same interval,we can express the truncation error of composite trapezoidal formula in Eq.(9):
${{R}_{N}}\left( \varphi \right)=-\frac{b-a}{12}\Delta {{t}^{2}}\varphi ''\left( \varepsilon \right),a<\varepsilon <b$ (19)
For the above equation,it is obvious that the error has the order of Δt2.
It is proved that the accumulation of error is decided by the F-function as follows:
Define the error of u at step N as eN and Pe(tN) as the error of P at the same step. We have
${{e}_{N}}=u\left( {{t}_{N}} \right)-\left( {{u}_{N}} \right)={{e}_{N}}\left( {{R}_{N}}\left( \varphi \right) \right).$ (20)
According to Eq.(12),Pe(tN) can be expressed as follows:
${{P}_{e}}\left( {{t}_{N}} \right)=\Delta t\sum\limits_{k=1}^{N-1}{K\left( {{t}_{N}}-{{t}_{k}} \right)}F\left[ {{e}_{k}} \right].$ (21)
Since the kernel function and F-function are continuous in interval [a,b], it is reasonable to assuming that (tN-tk)F[eN]<PRN. Assuming that the error increases,We have
$P{{e}_{N}}<\Delta t\left( N-1 \right)P{{R}_{N-1}}<\left( b-a \right)P{{R}_{N-1}}.$ (22)
According to Eq.(11),we have
${{e}_{N+1}}=F\left( P{{e}_{N}} \right)<F\left[ \left( b-a \right)P{{R}_{N-1}} \right].$ (23)
In the case that F-function is desirable,the following relationship can be met,
${{e}_{N+1}}<{{e}_{N}}$ (24)
So,the convergence of the problem relies on property of F-function.
3 Case studiesCase 1
To verify the feasibility and accuracy of the proposed method,case studies are given. The related known functions are listed as follows:
$u\left( t \right)=-\frac{1}{2}+\frac{1}{2}{{e}^{2x}}+\int\limits_{0}^{t}{-}{{e}^{2\left( -\tau \right)}}u{{\left( \tau \right)}^{2}}d\tau ,$ (25)
$K\left( x \right)=-{{e}^{2x}},$ (26)
$g\left( x \right)=-\frac{1}{2}+\frac{1}{2}{{e}^{2x}},$ (27)
$F\left( u \right)={{u}^{2}}$ (28)
It is known that the numerical solution of this particular problem is:
$u\left( t \right)=-1+\sqrt{2}\tanh \left( \sqrt{2t}+\frac{1}{2}\log \frac{\sqrt{2}-1}{\sqrt{2}+1} \right).$ (29)
Figure 1 shows the difference between the numerical solution and the analytical solution. The red line indicates the solution of our algorithm and the blue points stand for the analytical solution. In the numerical solution,Δt=0.01 is applied,which means that the solution has an accuracy of 4th order.
Fig. 1
Download: JPG
larger image
Fig. 1 Difference between the numerical solution and the analytical solution

The errors for the specific points are given in Table 1. The accuracy of the numerical solution is high enough and meets engineering computation needs.
Table 1
Table 1 Results and relative errors of the numerical solution
tanalytical solutionnumerical solutionrelative error/%
0000
0.50.7560030.756014-0.0015
11.6895161.6894980.001014
1.52.1956492.1956330.00072
22.3577462.357772-0.00109
2.52.4002292.400281-0.00219
32.410752.410814-0.00263
3.52.4133192.413386-0.00278
42.4139442.414012-0.00283
4.52.4140962.414165-0.00284
52.4141332.414202-0.00284

Table 1 Results and relative errors of the numerical solution

Case 2
The second case is as follows:
$u\left( t \right)=t+\int\limits_{0}^{t}{\left. \left( 2u\left( \tau \right)-\sin u\left( \tau \right) \right) \right)}d\tau ,$ (30)
K(x),g(x),F(u) are as follows:
$K\left( x \right)=1$ (31)
$g\left( x \right)=t$ (32)
$F\left( u \right)=2u-\sin u.$ (33)
It can be transferred into a nonstiff differential equation
$\frac{du}{dt}=1+2u-\sin \left( u \right),u\left( 0 \right)=0.$ (34)
The above differential equation could be solved by using Runge-Kutta algorithm.
Figure 2 shows the difference between our algorithm and the Runge-Kutta algorithm. The red line indicates the solution of our algorithm and the blue points stand for Runge-Kutta algorithm.
Fig. 2
Download: JPG
larger image
Fig. 2 Difference between our algorithm and Runge-Kutta(4,5) algorithm

The errors for the specific points are given in Table 2. The results of our algorithm are in close proximity to the results of Runge-Kutta algorithm.
Table 2
Table 2 Results and relative errors of our algcrithm solution
touralgorithmrunge-Kutta algorithmrelative error/%
0000
0.20.2214930.2214920.000747
0.40.4937220.4937170.001062
0.60.8351010.8350880.001472
0.81.2823231.2822940.002284
11.9170731.9169850.00458
1.22.937682.9371960.016479
1.44.7402234.740419-0.00415
1.67.3847117.3825980.028611
1.811.1986511.20336-0.04203
216.933716.933490.001268

Table 2 Results and relative errors of our algcrithm solution

4 ConclusionA new numerical solution is proposed and verified for the Volterra integral equation of the second kind. The established method would work with higher precision it one chooses a higher-precision numerical integration method. The proposed solution in this paper is easy to program and calculate, and the relative errors for the study cases are small enough. The limitation of the method is its dependence on the property of F-function.
References
[1] Yusufoglu E. A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations, 2008, 47:1099–1107.
[2] Yusufoglu E. Numerical expansion methods for solving systems of linear integral equations using interpolation and quadrature rules, 2007, 84(1):133–149.
[3] Huang L, Huang Y, Li X. Approximate solution of Abel integral equation, 2008, 56(7):1748–1757.
[4] Yang C. Chebyshev polynomial solution of nonlinear integral equations, 2012, 349(3):947–956.
[5] Yousefi S A. Numerical solution of Abel's integral equation by using Legendre wavelets, 2006, 175(1):574–580.
[6] Khodabin M, Maleknejad K, Shekarabi F H. Application of triangular functions to numerical solution of stochastic Volterra integral equations, 2013, 43(1):1–9.
[7] Kamyad A V, Mehrabinezhad M, Saberi-Nadjafi J. A numerical approach for solving linear and nonlinear Volterra integral equations with controlled error, 2010, 40(2):27–32.
[8] Adomian G. Frontier problem of physics: the decomposition method[M].New York: Kluwer Academic Publish, 1994.
[9] Bougoffa L, Rach R C, Mennouni A. A convenient technique for solving linear and nonlinear Abel integral equations by the Adomian decomposition method, 2011, 218(5):1785–1793.
[10] Pandey R K, Singh O P, Singh V K. Efficient algorithms to solve singular integral equations of Abel type, 2009, 57(4):664–676.


相关话题/图片 代数 中国科学院大学 北京 中国科学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 基于共形几何代数的空间并联机构位置正解*
    与传统的串联机构相比,空间并联机构具有更高的刚度、精度和较强的承载能力等优点,广泛应用于虚拟轴机床、微动机器人等现代尖端技术的许多领域。并联机构位置正解就是根据并联机构驱动杆长来推算动平台相对静平台的位置和姿态,该问题是该机构速度、加速度、误差分析、工作空间分析、奇异位置分析、动力学分析等问题的理论 ...
    本站小编 Free考研考试 2021-12-25
  • 一种多视角高精度图片的深度估计方法
    一种多视角高精度图片的深度估计方法李剑,陈宇航1.北京邮电大学人工智能学院收稿日期:2020-11-29修回日期:2020-12-17出版日期:2021-10-28发布日期:2021-09-06通讯作者:陈宇航E-mail:lijian@bupt.edu.cn基金资助:国家自然科学基金项目(U163 ...
    本站小编 Free考研考试 2021-12-25
  • 平面五杆机构计时轨迹综合的代数求解
    平面五杆机构计时轨迹综合的代数求解李学刚1,2,魏世民1,廖启征1,张英11.北京邮电大学自动化学院,北京100876;2.华北理工大学研究生学院,河北唐山063009收稿日期:2016-06-15出版日期:2017-02-28发布日期:2017-03-14作者简介:李学刚(1979-),男,博士生 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 北京市通州区降雨时空特征分析
    doi:10.12202/j.0476-0301.2019255李宝1,2,于磊1,3,,,潘兴瑶1,3,鞠琴2,张宇航1,2,赵立军4,杨默远1,31.北京市水科学技术研究院,100048,北京2.河海大学水文水资源学院,210098,江苏南京3.北京市非常规水资源开发利用与节水工程技术研究中心, ...
    本站小编 Free考研考试 2021-12-25
  • 基于对应分析法的北京密怀顺地区地表水回补地下水环境影响评价
    doi:10.12202/j.0476-0301.2020058霍丽涛1,,王博欣1,,,潘增辉1,吴劲2,3,杨朝阳41.河北省水利科学研究院,050051,河北石家庄2.城市水循环与海绵城市技术北京市重点实验室,100875,北京3.北京工业大学,100124,北京4.石家庄污水处理有限公司,0 ...
    本站小编 Free考研考试 2021-12-25
  • 北京理工大学学报2020年总目次(第40卷)
    .北京理工大学学报2020年总目次(第40卷)[J].北京理工大学学报(自然科学版),2020,40(12):1369~1386..[J].TransactionsofBeijingInstituteofTechnology,2020,40(12):1369-1386.二维码(扫一下试试看!)北京理 ...
    本站小编 Free考研考试 2021-12-21