删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hadamard-type inequalities for products of (h, m)-convex functions and their applications

本站小编 Free考研考试/2021-12-25

孙文兵
邵阳学院理学院, 湖南 邵阳 422000
摘要: 建立一些关于(h,m)-凸函数乘积的新Hadamard-型不等式,得到的结果是对通常凸性、第2种意义下的s-凸性、m-凸性、h-凸性意义下的Hadamard-型不等式的推广.
关键词: Hadamard不等式凸函数(h, m)-凸函数2个函数乘积
In recent years, the concept of convex function has been extended by some scholars. For example, Breckner[1] introduced the concept of s-convexity, and Varo?anec[2] defined h-convex functions. Some results for Hadamard-type inequalities related to the extended convex functions have been obtained[3-7].
1 Background knowledgeIn 2011, ?zdemir et al.[8] presented the (h, m)-convex function as follows.
Definition 1.1?Let h: J??→? be a non-negative function. We say that f:[0, b]→? is an (h, m)-convex function with m∈[0, 1], if f is non-negative and for all x, y∈[0, b] and α∈(0, 1), we have
$\begin{array}{*{20}{c}}{f\left( {\alpha x + m\left( {1 - \alpha } \right)y} \right) \le h\left( \alpha \right)f\left( x \right) + }\\{mh\left( {1 - \alpha } \right)f\left( y \right).}\end{array}$
If the above inequality is reversed, f is said to be (h, m)-concave function on [0, b].
Remark 1.1
1) if we choose m=1, we have h-convex functions;
2) if we choose m=1 and h(α)=α, we obtain non-negative ordinary convex functions;
3) if we choose m=1 and h(α)=αs, we have s-convex functions in the second sense;
4) if we choose h(α)=α, we have m-convex functions.
One of important applications of the concept of convex function is the Hadamard's inequality as follows.
Let f:I??→? be a convex function and a, bI with a < b, then the inequality
$f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}} \le \int_a^b {f\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{2}$ (1)
holds, which is well known as Hadamard's inequality.
In Ref. [9], Dragomir and Fitzpatrick established the Hadamard's type inequalities for s-convex function as follows.
Theorem 1.1?Suppose that f: [0, ∞)→[0, ∞) is an s-convex function in the second sense, where s∈(0, 1], and let a, b∈[0, ∞), a < b. If fL1([a, b]), the inequalities
${2^{s - 1}}f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{{s + 1}}$ (2)
hold. The constant $ k = \frac{1}{{s + 1}} $ is the best possible in the second inequality in (2).
In Ref.[3], Sarkaya proved the Hadamard's type inequalities for class of h-convex functions as follows.
Theorem 1.2?Let f:I??→? be an h-convex function, a, bI, a < b and fL1[a, b].Then
$\begin{array}{*{20}{c}}{\frac{1}{{2h\left( {\frac{1}{2}} \right)}}f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} }\\{ \le \left[ {f\left( a \right) + f\left( b \right)} \right]\int_0^1 {h\left( t \right){\rm{d}}t} .}\end{array}$ (3)
In Ref.[5], Dragomir and Toader proved the inequality for m-convex function as follows.
Theorem 1.3 Let f:[0, ∞)→? be an m-convex function with m∈(0, 1]. If 0≤a < b < ∞ and fL1[a, b], one has the inequality
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le }\\{\min \left\{ {\frac{{f\left( a \right) + mf\left( {\frac{b}{m}} \right)}}{2},\frac{{f\left( b \right) + mf\left( {\frac{a}{m}} \right)}}{2}} \right\}.}\end{array}$ (4)
Some inequalities of Hadamard-type related to this new class of (h, m)-convex functions are given[8].
Theorem 1.4?Let f:[0, ∞)→? be an (h, m)-convex function with m∈(0, 1] and t∈[0, 1]. If 0≤a < b < ∞ and fL1[a, b], the inequality
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le }\\{\min \left\{ {f\left( a \right)\int_0^1 {h\left( t \right){\rm{d}}t} + mf\left( {\frac{b}{m}} \right)\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} ,} \right.}\\{\left. {f\left( b \right)\int_0^1 {h\left( t \right){\rm{d}}t} + mf\left( {\frac{a}{m}} \right)\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} } \right\}}\end{array}$ (5)
holds.
In Ref. [10], Pachpatte established some Hadamard's type inequalities for products of convex functions as follows.
Theorem 1.5 Let f, g : [a, b] →[0, ∞) be convex functions on [a, b] ∈?, a < b, then
$\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \le \frac{1}{3}M\left( {a,b} \right) + \frac{1}{6}N\left( {a,b} \right),$ (6)
and
$\begin{array}{*{20}{c}}{2f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right) \le }\\{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + \frac{1}{6}M\left( {a,b} \right) + \frac{1}{3}N\left( {a,b} \right),}\end{array}$ (7)
where $ M\left( {a, b} \right) = f\left( a \right)g\left( a \right) + f\left( b \right)g\left( b \right) $, $ N\left( {a, b} \right) = f\left( a \right)g\left( b \right) + f\left( b \right)g\left( a \right) $.
In Ref.[11], some Hadamard's type inequalities for products of s-convex functions in the second sense are constructed by Kirmaci et al. as follows.
Theorem 1.6? Let f, g:[a, b]→?, a, b∈[0, ∞), a < b, be functions such that f and fg are in L1([a, b]). If f is convex and nonnegative on [a, b] and if g is s-convex on [a, b] for some fixed s∈(0, 1), then
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \le }\\{\frac{1}{{s + 2}}M\left( {a,b} \right) + \frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}N\left( {a,b} \right),}\end{array}$ (8)
where $ M\left( {a, b} \right) = f\left( a \right)g\left( a \right) + f\left( b \right)g(b) $, $ N\left( {a, b} \right) = f\left( a \right)g\left( b \right) + f\left( b \right)g(a) $.
Theorem 1.7 Let f, g:[a, b]→?, a, b∈[0, ∞), a < b, be functions such that f and fg in L1([a, b]). If f is s1-convex and g is s2-convex connegative on [a, b] for some fixed s1, s2∈(0, 1), then
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \le }\\{\frac{1}{{{s_1} + {s_2} + 1}}M\left( {a,b} \right) + B\left( {{s_1} + 1,{s_2} + 1} \right)N\left( {a,b} \right) = }\\{\frac{1}{{{s_1} + {s_2} + 1}}\left[ {M\left( {a,b} \right) + {s_1}{s_2}\frac{{\Gamma \left( {{s_1}} \right)\Gamma \left( {{s_2}} \right)}}{{\Gamma \left( {{s_1} + {s_2} + 1} \right)}}N\left( {a,b} \right)} \right],}\end{array}$ (9)
where $ B\left( {x, y} \right) = \smallint _{_0}^{^1}{t^{x-1}}{\left( {1-t} \right)^{y-1}}{\rm{d}}t = \frac{{\Gamma \left( x \right)\Gamma \left( y \right)}}{{\Gamma (x + y)}} $.
Theorem 1.8? Let f, g:[a, b]→?, a, b∈[0, ∞), a < b, be functions such that f and fg are in L1 ([a, b]). If f is convex and nonnegative on [a, b] and if g is s-convex on [a, b] for some fixed s∈(0, 1), then
$\begin{array}{*{20}{c}}{{2^s}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right) - \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \le }\\{\frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}M\left( {a,b} \right) + \frac{1}{{s + 2}}N\left( {a,b} \right).}\end{array}$ (10)
The main purpose of this work is to establish some new Hadamard-type inequalities, similar to the above inequalities, for products of convex functions and (h, m)-convex functions, which are generalizations of the above inequalities.
2 Main results and applicationsTheorem 2.1 Let h:[0, 1]→(0, ∞), f, g:[0, ∞)→?, be functions such that hL1([0, 1]), f gL1([a, b]) with a, b∈[0, ∞), a < b. If f is convex and nonnegative on [0, ∞), and if g is (h, m)-convex and nonnegative on [0, ∞) with m∈(0, 1] and t∈[0, 1], then the following inequality holds,
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} }\\{ \le \min \left\{ {\left[ {f\left( a \right) - f\left( b \right)} \right]P\left( {t,h\left( t \right),h\left( {1 - t} \right)} \right) + } \right.}\\{f\left( b \right)P\left( {1,h\left( t \right),h\left( {1 - t} \right)} \right),}\\{\left[ {f\left( b \right) - f\left( a \right)} \right]Q\left( {t,h\left( t \right),h\left( {1 - t} \right)} \right) + }\\{\left. {f\left( a \right)Q\left( {1,h\left( t \right),h\left( {1 - t} \right)} \right)} \right\},}\end{array}$ (11)
where
$\begin{array}{l}\;\;\;\;\;P\left( {t,h\left( t \right),h\left( {1 - t} \right)} \right)\\ = g\left( a \right)\int_0^1 {th\left( t \right){\rm{d}}t} + mg\left( {\frac{b}{m}} \right)\int_0^1 {th\left( {1 - t} \right){\rm{d}}t} ,\end{array}$
$\begin{array}{l}\;\;\;\;\;P\left( {1,h\left( t \right),h\left( {1 - t} \right)} \right)\\ = g\left( a \right)\int_0^1 {h\left( t \right){\rm{d}}t} + mg\left( {\frac{b}{m}} \right)\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} ,\end{array}$
$\begin{array}{l}\;\;\;\;\;Q\left( {t,h\left( t \right),h\left( {1 - t} \right)} \right)\\ = g\left( b \right)\int_0^1 {th\left( t \right){\rm{d}}t} + mg\left( {\frac{a}{m}} \right)\int_0^1 {th\left( {1 - t} \right){\rm{d}}t} ,\end{array}$
$\begin{array}{l}\;\;\;\;\;Q\left( {t,h\left( t \right),h\left( {1 - t} \right)} \right)\\ = g\left( b \right)\int_0^1 {h\left( t \right){\rm{d}}t} + mg\left( {\frac{a}{m}} \right)\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} .\end{array}$
Proof ?Since f is convex and nonnegative on [0, ∞), we have
$f\left( {ta + \left( {1 - t} \right)b} \right) \le tf\left( a \right) + \left( {1 - t} \right)f\left( b \right)$
and
$f\left( {tb + \left( {1 - t} \right)a} \right) \le tf\left( b \right) + \left( {1 - t} \right)f\left( a \right).$
From g is (h, m)-convex and nonnegative on [0, ∞), that is
$g\left( {tx + m\left( {1 - t} \right)y} \right) \le h\left( t \right)g\left( x \right) + mh\left( {1 - t} \right)g\left( y \right),$
for all x, y∈[0, ∞). It follows that, for all t∈[0, 1],
$g\left( {ta + \left( {1 - t} \right)b} \right) \le h\left( t \right)g\left( a \right) + mh\left( {1 - t} \right)g\left( {\frac{b}{m}} \right),$
and
$g\left( {tb + \left( {1 - t} \right)a} \right) \le h\left( t \right)g\left( b \right) + mh\left( {1 - t} \right)g\left( {\frac{a}{m}} \right).$
By the nonnegativeness of f and g, we obtain
$\begin{array}{l}f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right)\\ \le \left[ {tf\left( a \right) + \left( {1 - t} \right)f\left( b \right)} \right]\left[ {h\left( t \right)g\left( a \right) + } \right.\\\left. {mh\left( {1 - t} \right)g\left( {\frac{b}{m}} \right)} \right]\\ = \left[ {f\left( a \right) - f\left( b \right)} \right]\left[ {g\left( a \right)th\left( t \right) + } \right.\\\left. {mg\left( {\frac{b}{m}} \right)th\left( {1 - t} \right)} \right] + \\f\left( b \right)\left[ {g\left( a \right)h\left( t \right) + mg\left( {\frac{b}{m}} \right)h\left( {1 - t} \right)} \right],\end{array}$
and
$\begin{array}{l}f\left( {tb + \left( {1 - t} \right)b} \right)g\left( {tb + \left( {1 - t} \right)a} \right)\\ \le \left[ {tf\left( b \right) + \left( {1 - t} \right)f\left( a \right)} \right]\left[ {h\left( t \right)g\left( b \right) + } \right.\\\left. {mh\left( {1 - t} \right)g\left( {\frac{a}{m}} \right)} \right]\\ = \left[ {f\left( b \right) - f\left( a \right)} \right]\left[ {g\left( b \right)th\left( t \right) + } \right.\\\left. {mg\left( {\frac{a}{m}} \right)th\left( {1 - t} \right)} \right] + \\f\left( a \right)\left[ {g\left( b \right)h\left( t \right) + mg\left( {\frac{a}{m}} \right)h\left( {1 - t} \right)} \right].\end{array}$
Integrating the above two inequalities on [0, 1], with respect to t, we obtain
$\begin{array}{l}\int_0^1 {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} \\ \le \left[ {f\left( a \right) - f\left( b \right)} \right]\left[ {g\left( a \right)\int_0^1 {th\left( t \right){\rm{d}}t} + } \right.\\\left. {mg\left( {\frac{b}{m}} \right)\int_0^1 {th\left( {1 - t} \right){\rm{d}}t} } \right] + \\f\left( b \right)\left[ {g\left( a \right)\int_0^1 {\left( {h\left( t \right){\rm{d}}t + mg\left( {\frac{b}{m}} \right)\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} } \right)} } \right],\end{array}$
and
$\begin{array}{l}\int_0^1 {f\left( {tb + \left( {1 - t} \right)a} \right)g\left( {tb + \left( {1 - t} \right)a} \right){\rm{d}}t} \\ \le \left[ {f\left( b \right) - f\left( a \right)} \right]\left[ {g\left( b \right)\int_0^1 {th\left( t \right){\rm{d}}t} + } \right.\\\left. {mg\left( {\frac{b}{m}} \right)\int_0^1 {th\left( {1 - t} \right){\rm{d}}t} } \right] + \\f\left( a \right)\left[ {g\left( b \right)\int_0^1 {\left( {h\left( t \right){\rm{d}}t + mg\left( {\frac{b}{m}} \right)\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} } \right)} } \right],\end{array}$
It is easy to see
$\begin{array}{l}\int_0^1 {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} \\ = \int_0^1 {f\left( {tb + \left( {1 - t} \right)a} \right)g\left( {tb + \left( {1 - t} \right)a} \right){\rm{d}}t} \\ = \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} .\end{array}$
Using the above inequalities and equality, we obtain the required result.
Remark 2.1 If we choose f(x)=1 in (11) for all x∈[a, b], we obtain the inequality (5).
Remark 2.2 If we choose f(x)=1 and h(t)=t in (11) for x∈[a, b], we obtain the inequality (4).
Remark 2.3 If we choose f(x)=1, m=1 and h(t)=t in (11), we obtain the right hand side of the Hadamard's inequality (1). If we choose f(x)=1, m=1 and h(t)=ts in (11), we obtain the right hand side of the inequality (2).
Theorem 2.2 Let h1, h2:[0, 1]→(0, ∞), f, g:[0, ∞)→?, be functions such that h1h2L1 ([0, 1]), fgL1([a, b]) with a, b∈[0, ∞), a < b. If f is (h1, m1)-convex and nonnegative on [0, ∞), and if g is (h2, m2)-convex and nonnegative on [0, ∞) with m1, m2∈(0, 1] and t∈[0, 1], then the following inequality holds,
$\begin{array}{l}\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \\ \le \min \left\{ {f\left( a \right)P\left( {{h_1}\left( t \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right) + } \right.\\{m_1}f\left( {\frac{b}{{{m_1}}}} \right)P\left( {{h_1}\left( {1 - t} \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right),\\f\left( b \right)Q\left( {{h_1}\left( t \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right) + \\\left. {{m_1}f\left( {\frac{a}{{{m_1}}}} \right)Q\left( {{h_1}\left( {1 - t} \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)} \right\},\end{array}$ (12)
where
$\begin{array}{*{20}{c}}{P\left( {{h_1}\left( t \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)}\\{ = g\left( a \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} + }\\{{m_2}g\left( {\frac{b}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} ,}\end{array}$
$\begin{array}{*{20}{c}}{P\left( {{h_1}\left( {1 - t} \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)}\\{ = g\left( a \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( t \right){\rm{d}}t} + }\\{{m_2}g\left( {\frac{b}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right){\rm{d}}t} ,}\end{array}$
$\begin{array}{*{20}{c}}{Q\left( {{h_1}\left( t \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)}\\{ = g\left( b \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} + }\\{{m_2}g\left( {\frac{a}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} ,}\end{array}$
$\begin{array}{*{20}{c}}{Q\left( {{h_1}\left( {1 - t} \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)}\\{ = g\left( b \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( t \right){\rm{d}}t} + }\\{{m_2}g\left( {\frac{a}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right){\rm{d}}t} .}\end{array}$
Proof Since f is (h1, m1)-convex and nonnegative on [0, ∞), that is
$\begin{array}{*{20}{c}}{f\left( {tx + {m_1}\left( {1 - t} \right)y} \right) \le {h_1}\left( t \right)f\left( x \right) + }\\{{m_1}{h_1}\left( {1 - t} \right)f\left( y \right)}\end{array}$
for all x, y∈[0, ∞), we have
$f\left( {ta + \left( {1 - t} \right)b} \right) \le {h_1}\left( t \right)f\left( a \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{b}{{{m_1}}}} \right),$
and
$f\left( {tb + \left( {1 - t} \right)a} \right) \le {h_1}\left( t \right)f\left( b \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{a}{{{m_1}}}} \right).$
From g is (h2, m2)-convex and nonnegative on [0, ∞), that is
$g\left( {tx + {m_2}\left( {1 - t} \right)y} \right) \le {h_2}\left( t \right)g\left( x \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( y \right),$
for all x, y∈[0, ∞). It follows that, for all t∈[0, 1],
$g\left( {ta + \left( {1 - t} \right)b} \right) \le {h_2}\left( t \right)g\left( a \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{b}{{{m_2}}}} \right)$
and
$g\left( {tb + \left( {1 - t} \right)a} \right) \le {h_2}\left( t \right)g\left( b \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{a}{{{m_2}}}} \right).$
By the nonnegativeness of f and g, we obtain
$\begin{array}{*{20}{c}}{f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right)}\\{ \le \left[ {{h_1}\left( t \right)f\left( a \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{b}{{{m_1}}}} \right)} \right] \times }\\{\left[ {{h_2}\left( t \right)g\left( a \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]}\\{ = f\left( a \right)\left[ {g\left( a \right){h_1}\left( t \right){h_2}\left( t \right) + } \right.}\\{\left. {{m_2}g\left( {\frac{b}{{{m_2}}}} \right){h_1}\left( t \right){h_2}\left( {1 - t} \right)} \right] + }\\{{m_1}f\left( {\frac{b}{{{m_1}}}} \right)\left[ {g\left( a \right){h_1}\left( {1 - t} \right){h_2}\left( t \right) + } \right.}\\{\left. {{m_2}g\left( {\frac{b}{{{m_2}}}} \right){h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right)} \right],}\end{array}$
and
$\begin{array}{*{20}{c}}{f\left( {tb + \left( {1 - t} \right)a} \right)g\left( {tb + \left( {1 - t} \right)a} \right)}\\{ \le \left[ {{h_1}\left( t \right)f\left( b \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{a}{{{m_1}}}} \right)} \right] \times }\\{\left[ {{h_2}\left( t \right)g\left( b \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{a}{{{m_2}}}} \right)} \right]}\\{ = f\left( b \right)\left[ {g\left( b \right){h_1}\left( t \right){h_2}\left( t \right) + } \right.}\\{\left. {{m_2}g\left( {\frac{a}{{{m_2}}}} \right){h_1}\left( t \right){h_2}\left( {1 - t} \right)} \right] + }\\{{m_1}f\left( {\frac{a}{{{m_1}}}} \right)\left[ {g\left( b \right){h_1}\left( {1 - t} \right){h_2}\left( t \right) + } \right.}\\{\left. {{m_2}g\left( {\frac{a}{{{m_2}}}} \right){h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right)} \right],}\end{array}$
Integrating the above two inequalities on [0, 1], with respect to t, we obtain
$\begin{array}{*{20}{c}}{\int_0^1 {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} }\\{ \le f\left( a \right)\left[ {g\left( a \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} } \right] + }\\{{m_2}g\left( {\frac{b}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} + }\\{{m_1}f\left( {\frac{b}{{{m_1}}}} \right)\left[ {g\left( a \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} } \right] + }\\{\left. {{m_2}g\left( {\frac{b}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right){\rm{d}}t} } \right],}\end{array}$
and
$\begin{array}{*{20}{c}}{\int_0^1 {f\left( {tb + \left( {1 - t} \right)a} \right)g\left( {tb + \left( {1 - t} \right)a} \right){\rm{d}}t} }\\{ \le f\left( b \right)\left[ {g\left( a \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} } \right] + }\\{{m_2}g\left( {\frac{a}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} + }\\{{m_1}f\left( {\frac{a}{{{m_1}}}} \right)\left[ {g\left( b \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( t \right){\rm{d}}t} } \right] + }\\{\left. {{m_2}g\left( {\frac{a}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right){\rm{d}}t} } \right],}\end{array}$
It is easy to see that
$\begin{array}{l}\int_0^1 {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} \\ = \int_0^1 {f\left( {tb + \left( {1 - t} \right)a} \right)g\left( {tb + \left( {1 - t} \right)a} \right){\rm{d}}t} \\ = \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} .\end{array}$
Using the above three inequalities and equality, we obtain the required result.
Remark 2.4 If we choose h1(t)=t, m1=1 in(12), we can obtain the inequality (11).
Corollary 2.1 Let h:[0, 1] →(0, ∞), f, g : [0, ∞)→?, be functions such that hL1 ([0, 1]), fgL1([a, b]) with a, b∈[0, ∞), a < b. If f and g is (h, m)-convex and nonnegative on [0, ∞) with m∈(0, 1] and t∈[0, 1], then the following inequality holds,
$\begin{array}{l}\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \\ \le \min \left\{ {f\left( a \right)P\left( {h\left( t \right),h\left( t \right),h\left( {1 - t} \right)} \right) + } \right.\\mf\left( {\frac{b}{m}} \right)P\left( {h\left( {1 - t} \right),h\left( t \right),h\left( {1 - t} \right)} \right),\\f\left( b \right)Q\left( {h\left( t \right),h\left( t \right),h\left( {1 - t} \right)} \right) + \\\left. {mf\left( {\frac{a}{m}} \right)Q\left( {h\left( {1 - t} \right),h\left( t \right),h\left( {1 - t} \right)} \right)} \right\},\end{array}$ (13)
where
$\begin{array}{*{20}{c}}{P\left( {h\left( t \right),h\left( t \right),h\left( {1 - t} \right)} \right)}\\{ = g\left( a \right)\int_0^1 {{h^2}\left( t \right){\rm{d}}t} + mg\left( {\frac{b}{m}} \right)\int_0^1 {h\left( t \right)h\left( {1 - t} \right){\rm{d}}t} ,}\end{array}$
$\begin{array}{*{20}{c}}{P\left( {h\left( {1 - t} \right),h\left( t \right),h\left( {1 - t} \right)} \right)}\\{ = g\left( a \right)\int_0^1 {h\left( {1 - t} \right)h\left( t \right){\rm{d}}t} + mg\left( {\frac{b}{m}} \right)\int_0^1 {h{{\left( {1 - t} \right)}^2}{\rm{d}}t} ,}\end{array}$
$\begin{array}{*{20}{c}}{Q\left( {h\left( t \right),h\left( t \right),h\left( {1 - t} \right)} \right)}\\{ = g\left( b \right)\int_0^1 {{h^2}\left( t \right){\rm{d}}t} + mg\left( {\frac{a}{m}} \right)\int_0^1 {h\left( t \right)h\left( {1 - t} \right){\rm{d}}t} ,}\end{array}$
$\begin{array}{*{20}{c}}{Q\left( {h\left( {1 - t} \right),h\left( t \right),h\left( {1 - t} \right)} \right)}\\{ = g\left( b \right)\int_0^1 {h\left( {1 - t} \right)h\left( t \right){\rm{d}}t} + mg\left( {\frac{a}{m}} \right)\int_0^1 {{h^2}\left( {1 - t} \right){\rm{d}}t} .}\end{array}$
Proof From Theorem 2.2 let h1=h2=h and m1=m2=m, so Corollary 2.1 immediately holds.
Theorem 2.3 Let h:[0, 1]→(0, ∞), f, g:[0, ∞)→?, be functions such that hL1([0, 1]), f gL1([a, b]) with a, b∈[0, ∞), a < b. If f is convex and nonnegative on [0, ∞), and g is (h, m)-convex and nonnegative on [0, ∞) with m∈(0, 1] and t∈[0, 1], then the following inequality holds,
$\begin{array}{l}\frac{2}{{h\left( {\frac{1}{2}} \right)}}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right) - \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \\ \le \left[ {mg\left( {\frac{b}{m}} \right)f\left( a \right) + mg\left( {\frac{b}{m}} \right)f\left( b \right) + } \right.\\\;\;\;\;\;\left. {f\left( a \right)g\left( a \right)} \right]\int_0^1 {h\left( t \right){\rm{d}}t} + \\\left[ {{m^2}g\left( {\frac{a}{{{m^2}}}} \right)f\left( a \right) + {m^2}g\left( {\frac{a}{{{m^2}}}} \right)f\left( b \right) + } \right.\\\left. {mg\left( {\frac{b}{m}} \right)f\left( a \right)} \right]\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} + \left[ {f\left( b \right) - f\left( a \right)} \right] \times \\\int_0^1 {\left[ {g\left( a \right)th\left( t \right) + mg\left( {\frac{b}{m}} \right)th\left( {1 - t} \right)} \right]{\rm{d}}t} .\end{array}$ (14)
Proof We can write
$\frac{{a + b}}{2} = \frac{{ta + \left( {1 - t} \right)b}}{2} + \frac{{\left( {1 - t} \right)a + tb}}{2}.$
Since f is convex and nonnegative on [0, ∞), and g is (h, m)-convex and nonnegative on [0, ∞), so we have
$\begin{array}{l}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)\\ = f\left( {\frac{{ta + \left( {1 - t} \right)b}}{2} + \frac{{\left( {1 - t} \right)a + tb}}{2}} \right) \times \\g\left( {\frac{{ta + \left( {1 - t} \right)b}}{2} + \frac{{\left( {1 - t} \right)a + tb}}{2}} \right)\\ \le \frac{{h\left( {\frac{1}{2}} \right)}}{2}\left[ {f\left( {ta + \left( {1 - t} \right)b} \right) + f\left( {\left( {1 - t} \right)a + tb} \right)} \right] \times \\ \left[ {g\left( {ta + \left( {1 - t} \right)b} \right) + mg\left( {\frac{{\left( {1 - t} \right)a}}{m} + \frac{{tb}}{m}} \right)} \right]\\ \le \frac{{h\left( {\frac{1}{2}} \right)}}{2}\{ f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right) + \\m\left[ {tf\left( a \right) + \left( {1 - t} \right)f\left( b \right)} \right]g\left( {\frac{{\left( {1 - t} \right)a}}{m} + \frac{{tb}}{m}} \right) + \\\left[ {\left( {1 - t} \right)f\left( a \right) + tf\left( b \right)} \right]\left[ {h\left( t \right)g\left( a \right) + mh\left( {1 - t} \right)g\left( {\frac{b}{m}} \right)} \right] + \\\left. {m\left[ {\left( {1 - t} \right)f\left( a \right) + tf\left( b \right)} \right]g\left( {\frac{{\left( {1 - t} \right)a}}{m} + \frac{{tb}}{m}} \right)} \right\}\\ \le \frac{{h\left( {\frac{1}{2}} \right)}}{2}\left\{ {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right) + } \right.\\m\left[ {f\left( a \right) + f\left( b \right)} \right] \times \\\left[ {h\left( t \right)g\left( {\frac{b}{m}} \right) + mh\left( {1 - t} \right)g\left( {\frac{a}{{{m^2}}}} \right)} \right] + \\f\left( a \right)\left[ {g\left( a \right)h\left( t \right) + mg\left( {\frac{b}{m}} \right)h\left( {1 - t} \right)} \right] + \\\left. {\left[ {f\left( b \right) - f\left( a \right)} \right]\left[ {g\left( a \right)th\left( t \right) + mg\left( {\frac{b}{m}} \right)th\left( {1 - t} \right)} \right]} \right\}\\ = \frac{{h\left( {\frac{1}{2}} \right)}}{2}\left\{ {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right) + } \right.\\\left[ {mg\left( {\frac{b}{m}} \right)f\left( a \right) + mf\left( {\frac{b}{m}} \right)f\left( b \right) + f\left( a \right)g\left( a \right)} \right]h\left( t \right) + \\\left[ {{m^2}g\left( {\frac{a}{{{m^2}}}} \right)f\left( a \right) + {m^2}g\left( {\frac{a}{{{m^2}}}} \right)f\left( b \right)} \right] + \\\left. {mg\left( {\frac{b}{m}} \right)f\left( a \right)} \right]h\left( {1 - t} \right) + \\\left. {\left[ {f\left( b \right) - f\left( a \right)} \right]\left[ {g\left( a \right)th\left( t \right) + mg\left( {\frac{b}{m}} \right)th\left( {1 - t} \right)} \right]} \right\}.\end{array}$
Integrating both side of the above inequality on [0, 1], with respect to t, and by the fact that
$\begin{array}{*{20}{c}}{\int_0^1 {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} }\\{ = \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} ,}\end{array}$
we obtain
$\begin{array}{l}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)\\ \le \frac{{h\left( {\frac{1}{2}} \right)}}{2}\left\{ {\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + } \right.\\\left[ {mg\left( {\frac{b}{m}} \right)f\left( a \right) + mg\left( {\frac{b}{m}} \right)f\left( b \right) + f\left( a \right)g\left( a \right)} \right]\int_0^1 {h\left( t \right){\rm{d}}t} + \\\left[ {{m^2}g\left( {\frac{a}{{{m^2}}}} \right)f\left( a \right) + {m^2}g\left( {\frac{a}{{{m^2}}}} \right)f\left( b \right)} \right] + \\\left. {mg\left( {\frac{b}{m}} \right)f\left( a \right)} \right]\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} + \\\left[ {f\left( b \right) - f\left( a \right)} \right]\int_0^1 {\left[ {g\left( a \right)th\left( t \right) + mg\left( {\frac{b}{m}} \right)th\left( {1 - t} \right){\rm{d}}t} \right]} ,\end{array}$
which completes the proof.
Corollary 2.2 Let f, g:[0, ∞)→[0, ∞), be convex functions such that fgL1([a, b]) with a, b∈[0, ∞), a < b, then the following inequality holds,
$\begin{array}{*{20}{c}}{4f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)}\\{ \le \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + \frac{2}{3}M\left( {a,b} \right) + \frac{5}{6}N\left( {a,b} \right)}\end{array}$ (15)
where $ M\left( {a, b} \right) = f\left( a \right)g\left( a \right) + f\left( b \right)g(b)$, $ N\left( {a, b} \right) = f\left( a \right)g\left( b \right) + f\left( b \right)g(a) $.
Proof From Theorem 2.3 let h(t)=t, m=1, so Corollary 2.2 immediately holds.
Theorem 2.4 Let h1, h2:[0, 1]→(0, ∞), f, g:[0, ∞)→?, be functions such that h1h2L1([0, 1]), $f\;g \in ([\min \{ \frac{a}{{{m_1}}},\frac{a}{{{m_2}}}\} ,\max\{ \frac{b}{{{m_1}}},\frac{b}{{{m_2}}}\} ]) $ with a, b∈[0, ∞), a < b and m1, m2∈(0, 1].If f is (h1, m1)-convex and nonnegative on [0, ∞), and if g is (h2, m2)-convex and nonnegative on [0, ∞) with t∈(0, 1], then the following inequality holds,
$\begin{array}{l}\frac{1}{{{h_1}\left( {\frac{1}{2}} \right){h_2}\left( {\frac{1}{2}} \right)}}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)\\ \le \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + \\{m_1}{m_2}\int_0^1 {f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right){\rm{d}}t} + \\{m_1}{N_1}\left( {a,b} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} + \\{m_1}{m_2}{N_2}\left( {a,b} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right){\rm{d}}t} + \\{m_1}{M_1}\left( {a,b} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( t \right){\rm{d}}t} + \\{m_2}{M_2}\left( {a,b} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} ,\end{array}$ (16)
when
${N_1}\left( {a,b} \right) = {m_1}f\left( {\frac{b}{{{m_1}}}} \right)g\left( a \right) + {m_2}f\left( a \right)g\left( {\frac{b}{{{m_2}}}} \right),$
${N_2}\left( {a,b} \right) = {m_2}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{a}{{m_2^2}}} \right) + {m_1}f\left( {\frac{a}{{m_1^2}}} \right)g\left( {\frac{b}{{{m_2}}}} \right),$
${M_1}\left( {a,b} \right) = {m_1}f\left( {\frac{a}{{m_1^2}}} \right)g\left( a \right) + {m_2}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right),$
${M_2}\left( {a,b} \right) = {m_2}f\left( a \right)g\left( {\frac{a}{{m_2^2}}} \right) + {m_1}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right).$
Proof We can write
$\frac{{a + b}}{2} = \frac{{ta + \left( {1 - t} \right)b}}{2} + \frac{{\left( {1 - t} \right)a + tb}}{2}.$
Since f is (h1, m1)-convex and nonnegative on [0, ∞), and g is (h2, m2)-convex and nonnegative on [0, ∞), so we have
$\begin{array}{l}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)\\ = f\left( {\frac{{ta + \left( {1 - t} \right)b}}{2} + \frac{{\left( {1 - t} \right)a + tb}}{2}} \right) \times \\g\left( {\frac{{ta + \left( {1 - t} \right)b}}{2} + \frac{{\left( {1 - t} \right)a + tb}}{2}} \right)\\ \le {h_1}\left( {\frac{1}{2}} \right){h_2}\left( {\frac{1}{2}} \right)\left[ {f\left( {ta + \left( {1 - t} \right)b} \right) + } \right.\\\left. {{m_1}f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)} \right] \times \\\left[ {g\left( {ta + \left( {1 - t} \right)b} \right) + {m_2}g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right)} \right]\\ \le {h_1}\left( {\frac{1}{2}} \right){h_2}\left( {\frac{1}{2}} \right)\left\{ {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right) + } \right.\\{m_1}{m_2}f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right) + \\{m_2}\left[ {\left( {{h_1}\left( t \right)f\left( a \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{b}{{{m_1}}}} \right)} \right)} \right] \times \\\left[ {g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right)} \right] + {m_1}f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right) \times \\\left. {\left[ {{h_2}\left( t \right)g\left( a \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]} \right\}\\ \le {h_1}\left( {\frac{1}{2}} \right){h_2}\left( {\frac{1}{2}} \right)\left\{ {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right) + } \right.\\{m_1}{m_2}f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right) + \\{m_2}\left[ {\left( {{h_1}\left( t \right)f\left( a \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{b}{{{m_1}}}} \right)} \right)} \right] \times \\\left[ {{h_2}\left( t \right)g\left( {\frac{b}{{{m_2}}}} \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{a}{{m_2^2}}} \right)} \right] + \\{m_1}\left[ {{h_1}\left( t \right)f\left( {\frac{b}{{{m_1}}}} \right) + {m_1}{h_1}\left( {1 - t} \right)f\left( {\frac{a}{{m_1^2}}} \right)} \right] \times \\\left. {\left[ {{h_2}\left( t \right)g\left( a \right) + {m_2}{h_2}\left( {1 - t} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]} \right\}\\ = {h_1}\left( {\frac{1}{2}} \right){h_2}\left( {\frac{1}{2}} \right)\left\{ {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right) + } \right.\\{m_1}{m_2}f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right) + \\\left[ {{m_1}f\left( {\frac{b}{{{m_1}}}} \right)g\left( a \right) + {m_2}f\left( a \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]{h_1}\left( t \right){h_2}\left( t \right) + \\\left[ {m_2^2f\left( a \right)g\left( {\frac{a}{{m_2^2}}} \right) + {m_1}{m_2}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]{h_1}\left( t \right){h_2}\left( {1 - t} \right) + \\\left[ {{m_1}{m_2}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right) + m_1^2f\left( {\frac{a}{{m_1^2}}} \right)g\left( a \right)} \right]{h_1}\left( {1 - t} \right){h_2}\left( t \right) + \\\left[ {{m_1}m_2^2f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{a}{{m_2^2}}} \right)} \right] + \\\left. {\left. {m_1^2{m_2}f\left( {\frac{a}{{m_1^2}}} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right)} \right\}.\end{array}$
Integrating both side of the above inequality on [0, 1], with respect to t, and by the fact that
$\begin{array}{*{20}{c}}{\int_0^1 {f\left( {ta + \left( {1 - t} \right)b} \right)g\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} }\\{ = \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} ,}\end{array}$
we obtain
$\begin{array}{l}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)\\ \le {h_1}\left( {\frac{1}{2}} \right){h_2}\left( {\frac{1}{2}} \right)\left\{ {\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + } \right.\\{m_1}{m_2}\int_0^1 {f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right){\rm{d}}t} + \\\left[ {{m_1}f\left( {\frac{b}{{{m_1}}}} \right)g\left( a \right) + {m_2}f\left( a \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right]\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} + \\{m_2}\left[ {{m_2}f\left( a \right)g\left( {\frac{a}{{m_2^2}}} \right) + {m_1}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right] \times \\\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} + {m_1}\left[ {{m_2}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right) + } \right.\\\left. {{m_1}f\left( {\frac{a}{{m_1^2}}} \right)g\left( a \right)} \right]\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( t \right){\rm{d}}t} ,\end{array}$
which completes the proof.
Remark 2.5 If we choose m1=m2=1, h1(t)=t, h2(t)=ts in (16) for some s∈(0, 1), then we obtain the inequaltiy (10).
Remark 2.6 If we choose m1=m2=1 and h1(t)=h2(t)=t in (16), we can obtain the inequality (7).
Corollary 2.3 Let f:[0, ∞)→?, be an (h, m)-convex and nonnegative on [0, ∞) with m∈(0, 1] and t∈[0, 1]. If hL1([0, 1]), fL1([a, b]) with a, b∈[0, ∞), a < b, then the following inequality holds,
$\begin{array}{*{20}{c}}{\frac{2}{{h\left( {\frac{1}{2}} \right)}}f\left( {\frac{{a + b}}{2}} \right) \le }\\{\frac{1}{{b - a}}\left[ {\int_a^b {f\left( x \right){\rm{d}}x} + m\int_a^b {f\left( {\frac{x}{m}} \right){\rm{d}}x} } \right]\left[ {f\left( a \right) + mf\left( {\frac{b}{m}} \right)} \right] \times }\\{\int_0^1 {h\left( t \right){\rm{d}}t} + m\left[ {f\left( {\frac{b}{m}} \right) + mf\left( {\frac{a}{{{m^2}}}} \right)} \right]\int_0^1 {h\left( {1 - t} \right){\rm{d}}t} .}\end{array}$ (17)
Proof We choose g(x)=1 for all x∈[a, b], and h2(t)=t, m2=1 in (16), then we can obtain the following inequality
$\begin{array}{l}\frac{2}{{{h_1}\left( {\frac{1}{2}} \right)}}f\left( {\frac{{a + b}}{2}} \right)\\ \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} + {m_1}\int_0^1 {f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right){\rm{d}}t} + \\\left[ {f\left( a \right) + {m_1}f\left( {\frac{b}{{{m_1}}}} \right)} \right]\int_0^1 {{h_1}\left( {1 - t} \right){\rm{d}}t} + \\{m_1}\left[ {f\left( {\frac{b}{{{m_1}}}} \right) + {m_1}f\left( {\frac{a}{{m_1^2}}} \right)} \right]\int_0^1 {{h_1}\left( {1 - t} \right){\rm{d}}t} .\end{array}$
By the fact that
$\int_0^1 {f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right){\rm{d}}t} = \frac{1}{{b - a}}\int_a^b {f\left( {\frac{x}{{{m_1}}}} \right){\rm{d}}x} ,$
we can obtain the result.
Remark 2.7 If in Corollary 2.3 we choose h(t)=ts, m=1, we can obtain the following inequality for s-convex functions,
${2^s}f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} + \frac{{f\left( a \right) + f\left( b \right)}}{{s + 1}},$
which is the Remark 4 in Ref. [11].
Theorem 2.5 Let h1, h2:[0, 1]→(0, ∞), f, g:[0, ∞)→?, be functions such that h1h2L1([0, 1]), fgL1([a, b]) with a, b∈[0, ∞), a < b. If f is (h1, m1)-convex and nonnegative on [0, ∞), and if g is (h2, m2)-convex and nonnegative on [0, ∞) with m1, m2∈(0, 1] and t∈[0, 1], then the following inequality holds,
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} }\\{ \le f\left( a \right)P\left( {{h_1}\left( t \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right) + }\\{{m_1}f\left( {\frac{b}{{{m_1}}}} \right)P\left( {{h_1}\left( {1 - t} \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right),}\end{array}$ (18)
where
$\begin{array}{l}P\left( {{h_1}\left( t \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)\\ = g\left( a \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( t \right){\rm{d}}t} + {m_2}g\left( {\frac{b}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( t \right){h_2}\left( {1 - t} \right){\rm{d}}t} ,\end{array}$
$\begin{array}{l}P\left( {{h_1}\left( {1 - t} \right),{h_2}\left( t \right),{h_2}\left( {1 - t} \right)} \right)\\ = g\left( a \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( t \right){\rm{d}}t} + \\\;\;\;{m_2}g\left( {\frac{b}{{{m_2}}}} \right)\int_0^1 {{h_1}\left( {1 - t} \right){h_2}\left( {1 - t} \right){\rm{d}}t} .\end{array}$
Proof From the proof of Theorem 2.2, we are easy to obtain the inequality (18).
Remark 2.8 If we choose m1=m2=1, h1(t)=t and h2(t)=ts in (18), we can obtain the inequality (8).
Remark 2.9 If we choose m1=m2=1, h1(t)=ts1 and h2(t)=ts2 in (18), we can obtain the inequality (9).
Remark 2.10 If we choose m1=m2=1, h1(t)=t and h2(t)=t in (18), we can obtain the inequality (6).
Remark 2.11 From Remark 1.1, if we choose proper values of mi and hi(t) (i=1, 2) in inequalities (12), (16) and (18), we can botain the corresponding inequalities under the condition of different convexity. For example,
1) If we choose h1(t)=h2(t)=t in (16) and (18), we can obtain the following Hadamard-type inequalities for products of m-convex function,
$\begin{array}{l}4f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)\\ \le \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + \\{m_1}{m_2}\int_0^1 {f\left( {\frac{{\left( {1 - t} \right)a}}{{{m_1}}} + \frac{{tb}}{{{m_1}}}} \right)g\left( {\frac{{\left( {1 - t} \right)a}}{{{m_2}}} + \frac{{tb}}{{{m_2}}}} \right){\rm{d}}t} + \\\frac{1}{3}\left[ {{N_1}\left( {a,b} \right) + {m_1}{m_2}{N_2}\left( {a,b} \right)} \right] + \\\frac{1}{6}\left[ {{m_1}{M_1}\left( {a,b} \right) + {m_2}{M_2}\left( {a,b} \right)} \right],\end{array}$ (19)
and
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} }\\{ \le \frac{1}{3}\left[ {f\left( a \right)g\left( a \right) + {m_1}{m_2}f\left( {\frac{b}{{{m_1}}}} \right)g\left( {\frac{b}{{{m_2}}}} \right)} \right] + \frac{1}{6}{N_1}\left( {a,b} \right),}\end{array}$ (20)
where N1(a, b), N2(a, b), M1(a, b), M2(a, b) are as in Theorem 2.4.
2) If we choose m1=m, h1(t)=t; m2=1, h2(t)=ts in (16) and (18), we can obtain the Hadamard-type inequalities for products of m-convex function and s-convex function as follows,
$\begin{array}{*{20}{c}}{{2^{s + 1}}f\left( {\frac{{a + b}}{2}} \right)g\left( {\frac{{a + b}}{2}} \right)}\\{ \le \frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} + }\\{m\int_0^1 {f\left( {\frac{{\left( {1 - t} \right)a}}{m} + \frac{{tb}}{m}} \right)g\left( {\left( {1 - t} \right)a + tb} \right){\rm{d}}t} + }\\{\frac{1}{{s + 2}}\left[ {{{N'}_1}\left( {a,b} \right) + m{{N'}_2}\left( {a,b} \right)} \right] + }\\{m{{M'}_1}\left( {a,b} \right)B\left( {s + 1,2} \right) + {{M'}_2}\left( {a,b} \right)B\left( {2,s + 1} \right),}\end{array}$ (21)
and
$\begin{array}{*{20}{c}}{\frac{1}{{b - a}}\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} }\\{ \le \frac{1}{{s + 2}}{{N'}_1}\left( {a,b} \right) + f\left( a \right)g\left( b \right)B\left( {2,s + 1} \right) + }\\{mf\left( {\frac{b}{m}} \right)g\left( a \right)B\left( {s + 1,2} \right),}\end{array}$ (22)
where $ B\left( {x, y} \right) = \smallint _{_0}^{^1}{t^{x-1}}{\left( {1-t} \right)^{y-1}}{\rm{d}}t $, and
${{N'}_1}\left( {a,b} \right) = mf\left( {\frac{b}{m}} \right)g\left( a \right) + f\left( a \right)g\left( b \right),$
${{N'}_2}\left( {a,b} \right) = f\left( {\frac{b}{m}} \right)g\left( a \right) + mf\left( {\frac{a}{{{m^2}}}} \right)g\left( b \right),$
${{M'}_1}\left( {a,b} \right) = mf\left( {\frac{b}{{{m^2}}}} \right)g\left( a \right) + f\left( {\frac{b}{m}} \right)g\left( b \right),$
${{M'}_2}\left( {a,b} \right) = f\left( a \right)g\left( a \right) + mf\left( {\frac{b}{m}} \right)g\left( b \right).$

References
[1] Breckner W W. Stetigkeitsaussagen füreine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen[J].Pupl Inst Math, 1978, 23:13–20.
[2] Varo?anec S. On h-convexity[J].J Math Anal Appl, 2007, 326:303–311.DOI:10.1016/j.jmaa.2006.02.086
[3] Sarikaya M Z, Saglam A, Yildirim H. On some Hadamard-type inequalities for h-convex functions[J].Journal of Mathematical Inequalities, 2008, 2(3):335–341.
[4] Sarikaya M Z, Set E, ?zdemir M E. On some new inequalities of Hadamard type involving h-convex functions[J].Acta Math Univ Comenianae, 2010, LXXIX(2):265–272.
[5] Dragomir S S, Toader G. Some inequalities for m-convex functions[J].Studia Univ Babes-Bolyai Math, 1993, 38(1):21–28.
[6] Avci M, Kavurmaci H, ?zdemir M E. New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications[J].Applied Mathematics and Computation, 2011, 217(12):5171–5176.DOI:10.1016/j.amc.2010.11.047
[7] ?zdemir M E, Yildiz C, Akdemir A O, et al. On some inequalities for s-convex functions and applications[J].Journal of Inequalities and Applications, 2013, 2013(1):1–11.DOI:10.1186/1029-242X-2013-1
[8] ?zdemir M E, Akdemir A O, Set E. On (h, m)-convexity and Hadamard-type inequalities[J].Mathematics, 2011, 3:1–9.
[9] Dragomir S S, Fitzpatrick S. The Hadamard's inequality for s-convex functions in the second sense[J].Demonstratio Math, 1999, 32(4):687–696.
[10] Pachpatte B G. On some inequalities for convex functions[J].RGMIA Res Rep Coll, 2003, 6(E):1–9.
[11] Kirmaci U S, Bakula M K, ?zdemir M E, et al. Hadamard-type inequalities for s-convex functions[J].Appl Math Comput, 2007, 193(1):26–35.


相关话题/湖南 理学院 邵阳学院 原文 不等式

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 精确华林不等式的一个推广
    doi:10.12202/j.0476-0301.2019276齐宗会1,汪晖2,刘永平3,,1.天津商业大学宝德学院,300384,天津2.天津师范大学数学科学学院,300387,天津3.北京师范大学数学科学学院,100875,北京基金项目:国家自然科学基金资助项目(11871006)详细信息通讯 ...
    本站小编 Free考研考试 2021-12-25
  • 湖南新宁崀山丹霞红层天然半导体矿物的矿物学特征研究
    湖南新宁崀山丹霞红层天然半导体矿物的矿物学特征研究肖育雄,黎晏彰,丁竑瑞,李艳,鲁安怀?造山带与地壳演化教育部重点实验室,环境矿物功能北京市重点实验室,北京大学地球与空间科学学院,北京100871收稿日期:2018-12-14修回日期:2019-05-01出版日期:2019-09-20基金资助:国家 ...
    本站小编 Free考研考试 2021-12-20
  • 1980-2016年气候变化对湖南省农业产量的影响
    文献详情1980-2016年气候变化对湖南省农业产量的影响外文标题:ImpactsofclimatevariabilityoncropyieldsinHunanProvinceduring1980-2016文献类型:期刊期刊名称:资源科学年:2019卷:41期:3页码:582-590ISSN:100 ...
    本站小编 Free考研 2020-04-17
  • 区域图书馆联盟文献传递移动信息服务平台设计与实现——以BALIS原文传递为例
    文献详情区域图书馆联盟文献传递移动信息服务平台设计与实现——以BALIS原文传递为例文献类型:期刊期刊名称:电脑知识与技术年:2019卷:15期:7页码:21-22,30ISSN:1009-3044关键词:移动信息服务;区域图书馆联盟;文献传递;BALIS所属部门:图书馆链接地址:http://d. ...
    本站小编 Free考研 2020-04-17
  • 医疗救助运行现状、面临困境及改革建议 ——以湖南省为例
    文献详情医疗救助运行现状、面临困境及改革建议——以湖南省为例外文标题:CurrentSituation,DifficultiesandReformSuggestionsofMedicalAssistanceOperation——TakeHunanasanExample文献类型:期刊期刊名称:中国医疗 ...
    本站小编 Free考研 2020-04-17
  • 明代以来湖南道士和法师神像研究
    文献详情明代以来湖南道士和法师神像研究文献类型:期刊期刊名称:道教学刊年:2018期:01页码:207-223关键词:宝庆府;石马乡;新化县;摘要:二十年前,我开始在北京、湖南、广西等地的古玩市场收藏湖南道教和佛教神像。神像中,既有道士也有法师(俗称师公),这是湖南神像的独特之处,中国其他省很少能看 ...
    本站小编 Free考研 2020-04-17
  • 湖南省粮食生产经营方式转变的制约因素分析
    文献详情湖南省粮食生产经营方式转变的制约因素分析文献类型:期刊作者:潘薇薇[1]雷富琴[2]陈楠[3]机构:[1]中国人民大学农业与农村发展学院[2]中国人民大学农业与农村发展学院[3]中国人民大学农业与农村发展学院期刊名称:新商务周刊年:2018期:13页码:287ISSN:2095-4395关键 ...
    本站小编 Free考研 2020-04-17
  • Moser-Trudinger不等式及其极值函数的存在性
    文献详情Moser-Trudinger不等式及其极值函数的存在性外文标题:Moser-Trudingerinequalitiesandexistenceoftheirextremalfunctions文献类型:期刊作者:李嘉禹[1]杨云雁[2]朱晓宝[3]机构:[1]中国科学技术大学数学科学学院,合 ...
    本站小编 Free考研 2020-04-17
  • 数据库中不等式查询语句的resilience计量
    文献详情数据库中不等式查询语句的resilience计量外文标题:Resiliencecomputationforquerieswithinequalitiesindatabases文献类型:期刊期刊名称:计算机应用年:2018卷:38期:7页码:1893-1897,1915ISSN:1001-90 ...
    本站小编 Free考研 2020-04-17
  • 太湖南岸桑基鱼塘的起源与演变
    文献详情太湖南岸桑基鱼塘的起源与演变外文标题:Theoriginandevolutionofthemulberry-dykefish-pondbythesouthbankoftheTaiLake文献类型:期刊期刊名称:丝绸年:2018卷:55期:7页码:97-104ISSN:1001-7003关键词 ...
    本站小编 Free考研 2020-04-17