doi:10.12202/j.0476-0301.2019276齐宗会1,
汪晖2,
刘永平3,,1.天津商业大学宝德学院, 300384,天津
2.天津师范大学数学科学学院, 300387,天津
3.北京师范大学数学科学学院, 100875,北京
基金项目:国家自然科学基金资助项目(11871006)
详细信息 中图分类号:O174.41
计量
文章访问数:76
HTML全文浏览量:51
PDF下载量:15
被引次数:0
出版历程
收稿日期:2019-10-22
网络出版日期:2021-01-09
刊出日期:2020-12-01
An extension of the sharp Wirtinger inequality
Zonghui QI1,
Hui WANG2,
Yongping LIU3,,1. Boustead College, TianJin Commerce University, 300384, Tianjin, China
2. Department of Mathematics, Tianjin Normal University, 300387, Tianjin, China
3. Department of Mathematics, Beijing Normal University, 100875, Beijing, China
摘要 HTML全文 图(0)表(0)参考文献(11)相关文章施引文献资源附件(0)访问统计 摘要 摘要:给出了一类精确的华林不等式:设
$a \leqslant {x_1} < {x_2} < \cdots < {x_r} \leqslant b$,则对任给满足条件
$f({x_1}) = f({x_2}) = \cdots = $$ f({x_r}) = 0$的函数
$f \in W_q^r[a{{\rm{,}}}b]$,有
${\left\| f \right\|_p} \leqslant C(p{{\rm{,}}}q){(b - a)^{r + {1 / p} - {1 / q}}}{\left\| {{f^{(r)}}} \right\|_q}{{\rm{,}}}\;\;1 \leqslant p{{\rm{,}}}q \leqslant \infty $.首先,基于拉格朗日插值的积分型余项公式,将
$C(p{{\rm{,}}}q)$的计算转化为一个积分算子的范数;其次,将
$C(1{{\rm{,}}}1)$和
$C(\infty {{\rm{,}}}\infty )$的值转化为2个显式积分表达式,并将
$C(2{\rm{,}}2)$的值转化为计算一个希尔伯特-施密特算子的最大特征值;最后,用一个例子说明.
关键词:拉格朗日插值/
Lp-范数/
特征值/
华林不等式Abstract:In this study, we give a sharp Wirtinger inequality
${\left\| f \right\|_p} \text{≤} C(p{\rm{,}}q){(b - a)^{r + {1 / p} - {1 / q}}} {\left\| {{f^{(r)}}} \right\|_q}{{\rm{,}}}\;\; 1 \text{≤} p{{\rm{,}}} q \text{≤} \infty .$ For an arbitrary
$f \in W_q^r[a{{\rm{,}}}b]$ with
$f({x_1}) = f({x_2}) = \cdots = f({x_r}) = 0$,
$a \text{≤} {x_1} {\text{<}} {x_2}{\text{<}} \cdots {\text{<}} {x_r} \text{≤} b$.From integral type remainder of Lagrange interpolation, we refer computation of
$C(p{{\rm{,}}}q)$ to the norm of an integral operator. We refer values of
$C(1{{\rm{,}}}1)$ and
$C(\infty {{\rm{,}}}\infty )$ to two explicit integral expressions and value of
$C(2{{\rm{,}}}2)$ to computation of maximum eigenvalue of a Hilbert-Schmidt operator.An example was then given to show our method.
Key words:Lagrange interpolation/
Lp-norm/
eigenvalue/
Wirtinger inequality