删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Dissociation characteristics of bromoethane under external electric fields

本站小编 Free考研考试/2021-12-25

靳亚茹1, 刘玉柱1,2, 段逸群1, 张翔云1, 尹文怡1, 林华1, 布玛丽亚·阿布力米提3
1. 南京信息工程大学江苏省大气海洋光电探测重点实验室, 南京 210044;
2. 江苏省大气环境与装备技术协同创新中心, 南京 210044;
3. 新疆师范大学物理与电子工程学院, 乌鲁木齐 830054
摘要: 溴乙烷在太阳辐射下解离生成溴自由基,破坏大气臭氧层,因此有必要采取措施对其进行降解。采用密度泛函理论(DFT)方法,在B3LYP/6-31G+(d,p)水平上计算外电场(0~0.028 5 a.u.)下溴乙烷的解离特性和光谱特征。计算结果表明,随着Z轴方向的电场强度从0 a.u.增加到0.028 5 a.u.,分子体系总能量逐渐减小。同时在这一过程中,能隙单调变小,偶极矩逐渐增大。计算的溴乙烷解离势能曲线显示,强度为0.030 a.u.的外电场将使C-Br键断裂。以上这些结果为溴乙烷进行电场降解提供了重要信息。
关键词: 溴乙烷密度泛函理论降解外电场红外光谱
The large family of VOCs contains mainly hydrocarbons, aldehydes, ketones, etc. These compounds have different contribution rates in emission source and have different reactivities in the atmosphere[1]. While the halogenated hydrocarbon compounds enter the atmosphere, the photochemical reactions take place under the irradiation of sunlight. The halogen atoms produced by photolysis catalyze the decomposition of ozone, posing a great threat to the life on the earth[2]. Therefore, the degradation of halogenated hydrocarbon compounds has attracted widespread attention. As a kind of halogenated hydr-ocarbons, bromoethane dissociates under the radi-ation of sunlight and generates the bromine radical, which severely damages the atmospheric ozone layer.
Several methods have been applied to dissociate the bromoethane, including microbial degradation, photocatalytic degradation, ultrasonic degradation, and electrochemical degradation, and they have different advantages and disadvantages in their applications. The degradation of pollutants under external electric fields is a promising new method[3-4] and a hot spot in current researches[5-7]. The physical properties and dissociation characteristics of bromoethane under external electric fields have not yet been studied.
In this paper, the structure and the spectral and dissociation properties of bromoethane under external field have been calculated by using the density functional theory. The geometric structure, bond lengths, dipole moments, vibration frequ-encies, and other physical parameters are obtained. Meanwhile the potential energy curves under diff-erent external electric fields are obtained by scan-ning the single point energy along the C—Br bond.
1 Theory and computational methodThe Hamiltonian of the molecule under external electric field is
$H = {H_0} + {H_{{\mathop{\rm int}} }},$ (1)
where H0 is the Hamiltonian of the molecule without the external field, and Hintis the interaction Hamiltonian between the external electric field and the molecular system.
Using the dipole approximation, the interaction Hamiltonian can be expressed as
${H_{{\rm{int}}}} = - \mu \cdot F,$ (2)
where μ is the dipole moment and F represents the external electric field[8] (a.u. stands for atomic units, 1 a.u.=5.142 25×1011 V·m-1).
Gaussian 09[9] is used to carry out the theoretical calculations. First, the structure of bromoethane as shown in Fig. 1, has been optimized with different methods. By comparing the calculated data in Table 1 with the experimental values, we find that the calculation results at the B3LYP/6-31G+(d, p) level are in the best agreement with the experimental values. So, the B3LYP/6-31G+(d, p) level is used in further calculations for the total energy, dipole moment, frontier orbital levels, IR spectra, and potential energy curves.
Fig. 1
Download: JPG
larger image


Fig. 1 The optimized geometry of the ground-state bromoethane


Table 1
Table 1 The ground-state structure parameters of bromoethane obtained using different optimization methods
Method RC—Br/? ∠HCH/(°) ∠HCBr/(°)
B3LYP/6-31G 2.033 110.5 104.4
B3LYP/STO-3*G 1.944 107.9 108.1
B3LYP/3-21G 2.014 110.1 105.3
B3LYP/6-311G+(d, p) 1.988 109.5 104.9
B3LYP/6-31G+(d, p) 1.984 109.5 104.9
HF/6-31G 2.015 110.6 104.4
BPV86/6-31G 2.038 110.4 104.3
HF/3-21G 2.006 110.2 105.2
experimental value[10-11] 1.980 109.9 105.4

Table 1 The ground-state structure parameters of bromoethane obtained using different optimization methods

2 Results and discussions2.1 Effect of external electric fields on bond length, total energy and dipole momentWhen different electric fields are applied in the x-axis or y-axis direction, the degradation effect is less important than in the z-axis direction. Thus, in this study, bromoethane is exposed under different external electric fields along the z-axis.
The calculated results for the bond length (C—Br), total energy, and electric dipole moment under different external electric fields (0-0.028 5 a.u.) are shown in Fig. 2.
Fig. 2
Download: JPG
larger image


Fig. 2 Calculated physical characteristics of bromoethane under different electric fields

As shown in Fig. 2, the total energy decreases when the external electric field gradually increases, and the C—Br bond becomes longer in this process, which indicates that the C—Br bond is apt to break. At the same time, the dipole moment increases sharply, which means the molecule is splitting up.
2.2 Effects of external electric fields on molecular orbital energy level distributionThe total energies, the lowest unoccupied molecule orbital (LUMO) energy EL, the highest occupied molecule orbital (HOMO) energy EH, and the energy gap EH of bromoethane under different external fields were also obtained. The energy gap EG is given as
${E_{\rm{G}}} = \left( {{E_{\rm{L}}} - {E_{\rm{H}}}} \right) \times 27.2{\rm{eV}}{\rm{.}}$ (3)
It shows that the energy gap decreases monotonously while the external field increases from 0 to 0.028 5 a.u., as shown in Fig. 2 (d). This result indicates that the bromoethane molecule is more easily excited to a higher state.
2.3 Effects of external electric fields on IR spectrumThe infrared spectra of bromoethane under different external electric fields are also obtained. Bromoethane has eighteen different vibration modes. The calculated spectrum of the C—Br str (the calculated frequency of the C—Br str is 551 cm-1 under zero external fields, which is in good agreement with the experimental values[12-13]) under different external fields is shown in Fig. 3. It is seen that the frequency of the C—Br str shows red shift while the external field increases.
Fig. 3
Download: JPG
larger image


Fig. 3 The change of the C—Br stretch spectrum with the increase of external electric field

2.4 Effects of external electric fields on molecular dissociationwBy scanning single point energies along the C—Br distance, the potential energy curves under different external electric fields are obtained at the B3LYP/6-31+G(d, p) level (see Fig. 4). To smooth the curves, the results are fitted by the Morse potential model[15]
Fig. 4
Download: JPG
larger image


Fig. 4 The dissociation PESS (potential energy surfaces) along the C—Br bond of bromoethane under external electric fields

$V(\gamma ) = {D_{\rm{e}}}{\left[ {1 - {{\rm{e}}^{ - a\left( {\gamma - {R_{\rm{e}}}} \right)}}} \right]^2},$ (4)
where De is the dissociation energy, a is the Morse parame ter, γ is the internuclear distance, and Re is the equilibrium distance.
It is seen that the molecule stays in a stable point without external fields. However, the barrier of the dissociation of bromoethane drops significantly while the external field increases. When the external electric field reaches to 0.030 a.u., the barrier of the dissociation of bromoethane disappears completely, which demonstrates that the C—Br bond breaks and bromoethane is degraded under 0.030 a.u.. The results provide important information for studying the degradation mechanism of bromoethane under different external electric fields.
3 ConclusionsIn the present work, the spectral and dissociation properties of bromoethane under external electric fields(0-0.028 5 a.u.) are calculated. The density functional theory at the B3LYP/6-31G+(d, p) level is employed.
It is seen that the structure properties and the spectral and dissociation characteristics of brom-oethane are quite interesting under different external electric fields.
The results show that the total energy decreases as the external electric field gradually increases. The C—Br bond becomes longer in this process, which implies that the C—Br bond is apt to break. At the same time, the dipole moment inereases sharply, which means the molecule is splitting up. Meanwhile, the energy gap decreases monotonously and the C—Br strfrequency shows red shift while the external field increases.
It is shown that the dissociation barrier of bromoethane drops significantly while the external field increases. When the external electric field meaches to 0.030 a.u., the dissociation barrier of bromoethane disappears completely, which demon-strates that the C—Br bond breaks and bromoethane is degraded under 0.030 a.u.. The results provide important information for studying the degradation of bromoethane under different external electric fields.
References
[1] Mo Z W, Shao M, Lu S H. Review on volatile organic compounds (VOCs) source profiles measured in China[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2179-2189.
[2] Liu J L. Degrdation mechanisms and kinetic studies on he halogenated hydrocarbon in the atmosphere[D]. Lanzhou: Northwest Normal University, 2013(in Chinese).
[3] Liu Y Z, Li X H, Wang J F, et al. Study on dissociation properties and spectra of halon 1301 in external electric field[J]. Spectrosc Spect Anal, 2017, 37(3): 679-684.
[4] Ling Z G, Tang Y L, Li Y P, et al. Molecular structure and electronic spectrum of 2, 2', 5, 5'-tetrachlorobiphenyl under the external electric field[J]. Acta Phys Sin, 2013, 62(22): 133-140.
[5] Sidir I, Sidir Y G, Berber H, et al. Emerging ground and excited state dipole moments and external electronic structure:a solvatochromism and theoretical study on 2-((phenylimino)-methyl)phenol derivatives[J]. Mol Liq, 2015, 206: 56-67. DOI:10.1016/j.molliq.2015.01.056
[6] Setayandeh S S, Lohrasebi A. The effects of external electric fields of 900 MHz and 2450 MHz frequencies on αβ-tubulin dimer stabilized by paclitaxel:molecular dynamics approach[J]. Theor Comput Chem, 2016, 15(2): 1650010. DOI:10.1142/S0219633616500103
[7] Sajadi M, Lohrasebi A, Setayandeh S S, et al. Water molecules response to an external GHz electric field in KcsA potassium channel:a molecular modeling approach[J]. Theor Comput Chem, 2015, 14(2): 1550012. DOI:10.1142/S0219633615500121
[8] Cooper G, Olney T N, Brion C E. Absolute UV and Soft X-ray photoabsorption of ethylene by high resolution dipole (e, e) spectroscopy[J]. Chem Phys, 1995, 194(1): 175-184.
[9] Frish M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision C.01[CP]. Walling ford: Gaussian Inc, 2010.
[10] Flanagan C, Pierce L. Microwave spectrum, structure, and quadrupole coupling constant tensor of ethyl bromide[J]. Chem Phys, 1963, 38(12): 2963.
[11] Kudchadker S A, Kudchadker A P. Ideal gas thermodynamic properties of selected bromoethanes and iodoethane[J]. Chem Phys, 1979, 8(2): 519.
[12] Experimental IR spectrum of Bromoethane. NIST chemical kinetic data base[EB/OL].[2018-03-10]. http://webbook.nist.gov/cgi/cbook.cgi?ID=C74964&Units=SI&Type=IR-SPEC&Index=0.
[13] Zhang Y P, Wang H T, Zhang L, et al. Measurements of IR absorption across section and spectrum simulation of lewisite[J]. Spectrosc Spect Anal, 2015, 35(2): 466-469.
[14] Irikura K K, Johnson R D, Kacker R N. Uncertainties in scaling factors for ab initio vibrational frequencies[J]. Phys Chem A, 2005, 109: 8430-8437. DOI:10.1021/jp052793n
[15] Zhu Z H, Yu H G. Molecular structure and potential energy function[M]. Beijing: Science Press, 1997.


相关话题/图片 计算 光谱 大气 辐射

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 平行板受限下伊辛普适类临界卡西米尔力的一种计算方法
    陈东艳,苗兵中国科学院大学材料科学与光电技术学院,北京1000492018年4月8日收稿;2018年4月27日收修改稿基金项目:国家自然科学基金(21774131,21544007)资助通信作者:苗兵,E-mail:bmiao@ucas.ac.cn摘要:研究统计力学中伊辛普适类的临界卡西米尔力。针对 ...
    本站小编 Free考研考试 2021-12-25
  • 高光谱监测技术在重金属污染土壤上的应用
    陈功伟,赵思颖,倪才英江西师范大学地理与环境学院,南昌3300222018年5月7日收稿;2018年10月10日收修改稿基金项目:江西省环保厅基金科技项目(JXHBKJ2013-6)资助通信作者:倪才英,E-mail:ncy1919@126.com摘要:为克服传统重金属污染监测的不足,加强新技术应用 ...
    本站小编 Free考研考试 2021-12-25
  • 不同卫星反演的大气CO2浓度差异时空特征分析
    吴长江1,2,雷莉萍1,曾招城31.中国科学院遥感与数字地球研究所数字地球重点实验室,北京100094;2.中国科学院大学资源与环境学院,北京100049;3.美国加州理工学院地质与行星科学系,美国加利福尼亚州帕萨迪纳市CA911252018年1月15日收稿;2018年4月4日收修改稿基金项目:国家 ...
    本站小编 Free考研考试 2021-12-25
  • 地球椭球模型中太阳位置计算的改进
    李文1,2,3,赵永超1,2,31.中国科学院空间信息处理与应用系统技术重点实验室,北京100190;2.中国科学院电子学研究所,北京100190;3.中国科学院大学,北京1000492018年1月25日收稿;2018年3月29日收修改稿基金项目:国家重大科研仪器研制项目(41427805)资助通信 ...
    本站小编 Free考研考试 2021-12-25
  • 激光雷达回波强度数据辐射特性分析
    杜松1,2,李晓辉1,刘照言1,陈育伟1,3,王震1,唐伶俐1,贺文静11.中国科学院光电研究院定量遥感信息技术重点实验室,北京100094;2.中国科学院大学,北京100049;3.芬兰地球空间研究所,马萨拉FI-024302018年2月13日收稿;2018年4月12日收修改稿基金项目:科技部国际 ...
    本站小编 Free考研考试 2021-12-25
  • 济南市区大气中VOCs的浓度、来源及健康风险评价
    桑博1,魏凤霞21.山东省冶金设计院股份有限公司,济南250101;2.济钢集团国际工程技术有限公司,济南2501012017年12月12日收稿;2018年3月29日收修改稿通信作者:桑博,E-mail:hbsb@sdmecl.com摘要:分析2010—2016年济南市区大气VOCs的浓度、组成特征 ...
    本站小编 Free考研考试 2021-12-25
  • 一种基于谱聚类算法的高光谱遥感图像分类方法
    杨随心1,2,耿修瑞1,2,杨炜暾1,2,赵永超1,2,卢晓军31.中国科学院电子学研究所中国科学院空间信息处理与应用系统技术重点实验室,北京100190;2.中国科学院大学,北京100049;3.中国国际工程咨询公司,北京1000482018年1月5日收稿;2018年3月30日收修改稿基金项目:高 ...
    本站小编 Free考研考试 2021-12-25
  • 吉林省工业增长与工业大气污染脱钩关系的时空演变
    任嘉敏1,2,马延吉11.中国科学院东北地理与农业生态研究所,长春13010;2.中国科学院大学,北京1000492017年11月29日收稿;2018年3月14日收修改稿基金项目:国家自然科学基金(41371135)和吉林省科技发展计划项目(20140203027NY)资助通信作者:马延吉,E-ma ...
    本站小编 Free考研考试 2021-12-25
  • 气冷涡轮导叶流热耦合计算及机理*
    涡轮内部的流场与温度场是高度耦合的,一方面涡轮内部流场存在着如激波、二次涡系等复杂流动结构,会影响到部件温度场分布及其换热特性,另一方面,固体域的温度分布及冷却射流与主流的相互作用也将反过来影响流场的流动特征[1]。因此,理解和掌握涡轮内部流场温度场相互作用机制,对于提高冷却效率和准确预测热负荷有着 ...
    本站小编 Free考研考试 2021-12-25
  • 风偏差对火箭最大气动载荷精度的影响*
    近年来,中国在航天领域取得一系列丰硕成果,运载火箭作为航天技术领域里的核心之一,在发射之前,除需要考虑运载火箭本身是否满足条件外,还需考虑气象环境的影响。例如,运载火箭在高空飞行时,会受到较大的高空风载作用,轻则影响火箭发射的精度,重则导致箭体弯曲折断,造成飞行失败。因此,在火箭设计、研制、发射和飞 ...
    本站小编 Free考研考试 2021-12-25