删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Effect of broad bounce on primordial gravitational waves

本站小编 Free考研考试/2021-12-25

赵锦云, 朴云松
中国科学院大学物理科学学院, 北京 101408
摘要: 反弹暴涨成功解决了暴涨无法解决的奇点问题。一般地,该模型反弹区域持续时间较短。着重讨论宽反弹情形,并研究宽反弹期间的引力波功率谱。
关键词: 反弹暴涨引力波功率谱
Inflation[1-3], as the paradigm of the early universe, is a fundamental model of the cosmology. It has not only solved the problems of the big bang theory but also provided the primordial scalar and tensor perturbations that generate the large-scale structure[4]. However, because of the so-called "singularity problem", inflation theory needs to be improved. An acceptable way to solve the problem is considering the so-called bounce inflation scenario[5-7](see also Refs.[8-17]). In bounce inflation, there is a contracting phase after a bounce phase the inflation starts. Recently, the development of effective field theory of nonsingular cosmologies[18-20] has made us construct full stable bounce models.
The evidence, that is, the power deficit of the CMB TT-mode spectrum at large scale observed by the Plank collaboration makes physicists to consider the physics before inflation[21]. The bounce model is accepted by many workers in order to solve the problem above, which has been reviewed in Refs.[22-23].
Primordial gravitational waves (GWs) open an important window for exploring the early universe. Recently, a large number of experiments aiming at observing GWs have been implemented or will be implemented[24]. Thus understanding about the early universe and inflation scenario will be deeper and deeper. Since the primordial GWs are independent of the dynamics of the scalar field, it can be used to identify the physics of the pre-inflation background. In a previous work[25], GWs of bounce model has been studied, in which the duration that the bounce lasts is short (the so-called narrow bounce). However, the case of broad bounce is not ruled out. In this study, we focus on the GWs from the bounce inflation with a broad bounce.
1 Tensor perturbation in bounce inflation scenarioIn bounce inflation scenario, the universe experiences a phase, showed in Fig. 1, before inflation, in which a varying with η is the scale factor of the universe, ηB- is the beginning time of bounce phase, ηB is the so-called bounce point at which Hubble Constant H=0, and ηB+ is the ending time of bounce phase. By contrast to the previous work, contracting phase does not keep symmetric to inflation, which also means HB-≠-HB+.
Fig. 1
Download: JPG
larger image

ηB is the so-called bounce point.
Fig. 1 The bounce phase occurring between ηB- and ηB+

We start with the second order perturbation action in which tensor perturbation γij presents the physical message in this time,
$S_{{\gamma _{ij}}}^{\left( 2 \right)} = \int {{d^4}x{a^2}\left[ {{{\left( {{{\gamma '}_{ij}}} \right)}^2} - {{\left( {\partial {{\gamma '}_{ij}}} \right)}^2}} \right]} .$ (1)
The equation of motion turns as
${u''_k} + \left( {{k^2} - \frac{{a''}}{a}} \right){u_k} = 0,$ (2)
where ${u_k} = \sqrt {2{a^2}} {\gamma _k}$. We will use the convention in Ref.[25] to solve the equation of motion, and then get the power spectrum of tensor perturbation PT that is proportional to the function |c3, 1-c3, 22| showed later.
In contracting phase, the scale factor can be parameterized as
${{a}_{c}}\left( \eta \right)={{a}_{B-}}{{\left( \frac{\eta -{{{\tilde{\eta }}}_{B-}}}{{{\eta }_{B-}}-{{{\tilde{\eta }}}_{B-}}} \right)}^{\frac{1}{{{\epsilon }_{c}}-1}}},$ (3)
where $\tilde{\eta}_{B-}=\eta_{B-}-\left[\left(\epsilon_{c}-1\right) \mathscr{H}_{B-}\right]^{-1}$ and $\epsilon_{c}=$$-\dot{H} / H$ at contracting phase. Taking the BD vacuum
${{u}_{k}}=\frac{1}{\sqrt{2k}}{{\text{e}}^{\text{i}k\eta }}$ (4)
for the initial state. The solution of equation is
${{u}_{k}}=\frac{\sqrt{\text{ }\!\!\pi\!\!\text{ }\left| \eta -{{{\tilde{\eta }}}_{B-}} \right|}}{2}{{c}_{1,1}}H_{{{v}_{1}}}^{\left( 1 \right)}\left( k\left| \eta -{{{\tilde{\eta }}}_{B-}} \right| \right),$ (5)
where $v_{1}=\frac{\epsilon_{c}-3}{2\left(\epsilon_{c}-1\right)}$.
In bounce phase, the scale factor can be parameterized as
$a={{a}_{B}}{{\text{e}}^{\frac{1}{2}\alpha {{\left( t-{{t}_{B}} \right)}^{2}}}}.$ (6)
Then the equation of motion, to the first order of η, is
${{{u}''}_{k}}+\left( {{k}^{2}}-\alpha a_{B}^{2} \right){{u}_{k}}=0.$ (7)
The corresponding solution is
${{u}_{k}}\left( \eta \right)={{c}_{2,1}}{{\text{e}}^{\sqrt{\alpha a_{B}^{2}-{{k}^{2}}}\left( \eta -{{\eta }_{B}} \right)}}+{{c}_{2,2}}{{\text{e}}^{-\sqrt{\alpha a_{B}^{2}-{{k}^{2}}}\left( \eta -{{\eta }_{B}} \right)}}.$ (8)
However, for the broad bounce, where the bounce time Δη~1/aB, the second order of η should be considered, and the equation of motion is
${{{u}''}_{k}}+\left\{ {{k}^{2}}-\left[ \alpha a_{B}^{2}+\frac{3}{2}{{\alpha }^{2}}a_{B}^{4}{{\eta }^{2}} \right] \right\}{{u}_{k}}=0.$ (9)
The corresponding solution is
${{u}_{k}}\left( \eta \right)={{c}_{2,1}}{{D}_{-F-\frac{1}{2}}}\left( \text{i}G\eta \right)+{{c}_{2,2}}{{D}_{F-\frac{1}{2}}}\left( G\eta \right),$ (10)
where $F = \frac{{{k^2}}}{{{G^2}}} - \frac{1}{{\sqrt 6 }}$ and $G = \sqrt {\sqrt 6 \alpha } {a_B}$. And D is the parabolic cylinder function.
In inflationary phase, the scale factor is
${{a}_{\text{inf}}}\left( \eta \right)={{a}_{B+}}{{\left( \frac{\eta -{{{\tilde{\eta }}}_{B+}}}{{{\eta }_{B+}}-{{{\tilde{\eta }}}_{B+}}} \right)}^{\frac{1}{{{\varepsilon }_{\inf }}-1}}},$ (11)
where $\tilde{\eta}_{B+}=\eta_{B+}-\left[\left(\epsilon_{\mathrm{inf}}-1\right) \mathscr{H}_{B+}\right]^{-1}$. The solution is
$\begin{array}{l}{u_k} = \frac{{\sqrt {{\rm{ \mathsf{ π} }}\left| {\eta - {{\tilde \eta }_{B + }}} \right|} }}{2}\left[ {{c_{3,1}}H_{{v_2}}^{\left( 1 \right)}\left( {k\left| {\eta - {{\tilde \eta }_{B + }}} \right|} \right) + } \right.\\\;\;\;\;\;\;\left. {{c_{3,2}}H_{{v_2}}^{\left( 2 \right)}\left( {k\left| {\eta - {{\tilde \eta }_{B + }}} \right|} \right)} \right],\end{array}$ (12)
where $v_{2}=\frac{\epsilon_{\mathrm{inf}}-3}{2\left(\epsilon_{\mathrm{inf}}-1\right)}$.
1.1 Narrow bounceWe first consider the narrow bounce (8). Using the continuous condition that the solution and its derivative of different phases should be continuous at ηB- point and ηB+ point, one can get the transport matric
$\left( {\begin{array}{*{20}{c}}{{{\rm{c}}_{3,1}}}\\{{{\rm{c}}_{3,2}}}\end{array}} \right) = {\mathscr{M}^{\left( {3,2} \right)}} \times {\mathscr{M}^{\left( {3,2} \right)}} \times \left( {\begin{array}{*{20}{c}}{{{\rm{c}}_{1,1}}}\\{{{\rm{c}}_{1,2}}}\end{array}} \right).$ (13)
The matric elements of $\mathscr{M}^{(2, 1)}$ are
$\begin{array}{l}\mathscr{M}_{11}^{\left( {2,1} \right)} = \frac{{\sqrt {{\rm{ \mathsf{ π} }}{x_1}} }}{{4l}}{{\rm{e}}^{ - l{y_1}}}\left[ {\left( {l + \alpha a_B^2{y_1}} \right)H_{{v_1}}^{\left( 1 \right)}\left( {k{x_1}} \right) - } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_1} - 1}^{\left( 1 \right)}\left( {k{x_1}} \right)} \right],\end{array}$ (14)
$\begin{array}{l}\mathscr{M}_{12}^{\left( {2,1} \right)} = \frac{{\sqrt {{\rm{ \mathsf{ π} }}{x_1}} }}{{4l}}{{\rm{e}}^{ - l{y_1}}}\left[ {\left( {l + \alpha a_B^2{y_1}} \right)H_{{v_1}}^{\left( 2 \right)}\left( {k{x_1}} \right) - } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_1} - 1}^{\left( 2 \right)}\left( {k{x_1}} \right)} \right],\end{array}$ (15)
$\begin{array}{l}\mathscr{M}_{21}^{\left( {2,1} \right)} = \frac{{\sqrt {{\rm{ \mathsf{ π} }}{x_1}} }}{{4l}}{{\rm{e}}^{l{y_1}}}\left[ {\left( {l - \alpha a_B^2{y_1}} \right)H_{{v_1}}^{\left( 1 \right)}\left( {k{x_1}} \right) - } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_1} - 1}^{\left( 1 \right)}\left( {k{x_1}} \right)} \right],\end{array}$ (16)
$\begin{array}{l}\mathscr{M}_{22}^{\left( {2,1} \right)} = \frac{{\sqrt {{\rm{ \mathsf{ π} }}{x_1}} }}{{4l}}{{\rm{e}}^{l{y_1}}}\left[ {\left( {l - \alpha a_B^2{y_1}} \right)H_{{v_1}}^{\left( 2 \right)}\left( {k{x_1}} \right) - } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_1} - 1}^{\left( 2 \right)}\left( {k{x_1}} \right)} \right],\end{array}$ (17)
and the matric elements of $\mathscr{M}^{(3, 2)}$ are
$\begin{array}{l}\mathscr{M}_{11}^{\left( {3,2} \right)} = \frac{{{\rm{i}}\sqrt {{\rm{ \mathsf{ π} }}{x_2}} }}{2}{{\rm{e}}^{l{y_2}}}\left[ {\left( {l - \alpha a_B^2{y_2}} \right)H_{{v_2}}^{\left( 2 \right)}\left( {k{x_2}} \right) + } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_2} - 1}^{\left( 2 \right)}\left( {k{x_2}} \right)} \right],\end{array}$ (18)
$\begin{array}{l}\mathscr{M}_{12}^{\left( {3,2} \right)} = \frac{{{\rm{i}}\sqrt {{\rm{ \mathsf{ π} }}{x_2}} }}{2}{{\rm{e}}^{ - l{y_2}}}\left[ {\left( { - l - \alpha a_B^2{y_2}} \right)H_{{v_2}}^{\left( 2 \right)}\left( {k{x_2}} \right) + } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_2} - 1}^{\left( 2 \right)}\left( {k{x_2}} \right)} \right],\end{array}$ (19)
$\begin{array}{l} - \mathscr{M}_{21}^{\left( {3,2} \right)} = \frac{{{\rm{i}}\sqrt {{\rm{ \mathsf{ π} }}{x_2}} }}{2}{{\rm{e}}^{l{y_2}}}\left[ {\left( {l - \alpha a_B^2{y_2}} \right)H_{{v_2}}^{\left( 1 \right)}\left( {k{x_2}} \right) + } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_2} - 1}^{\left( 1 \right)}\left( {k{x_2}} \right)} \right],\end{array}$ (20)
$\begin{array}{l} - \mathscr{M}_{22}^{\left( {3,2} \right)} = \frac{{{\rm{i}}\sqrt {{\rm{ \mathsf{ π} }}{x_2}} }}{2}{{\rm{e}}^{ - l{y_2}}}\left[ {\left( { - l - \alpha a_B^2{y_2}} \right)H_{{v_2}}^{\left( 1 \right)}\left( {k{x_2}} \right) + } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\left. {kH_{{v_2} - 1}^{\left( 1 \right)}\left( {k{x_2}} \right)} \right],\end{array}$ (21)
where $l = \sqrt {\alpha a_B^2 - {k^2}} $, ${x_1} = \left| {{\eta _{B - }} - {{\tilde \eta }_{B - }}} \right|$, ${y_1} = {\eta _{B - }} - {\eta _B}$, ${x_2} = \left| {{\eta _{B + }} - {{\tilde \eta }_{B + }}} \right|$, ${y_2} = {\eta _{B + }} - {\eta _B}$.
For large k and small k-mode approximations, we have
$\begin{array}{l}{\left| {{c_{3,1}} - {c_{3,2}}} \right|^2} \approx 1 - A\sin \left( {\frac{{2k}}{{{\mathscr{H}_{B + }}}}} \right) - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;A\sin \left( {\frac{{2k}}{{{\mathscr{H}_{B + }}}} + 2k\Delta {\eta _B}} \right),\end{array}$ (22)
for large k, where $A=\frac{\mathscr{H}_{B+}}{k}-\frac{\alpha a_{B}^{2} \Delta \eta_{B}}{2 k}$, and
$\begin{align} & {{\left| {{c}_{3,1}}-{{c}_{3,2}} \right|}^{2}}\approx \frac{{{2}^{\frac{2}{1-{{\epsilon }_{c}}}}}}{\text{ }\!\!\pi\!\!\text{ }}{{\mathit{\Gamma }}^{2}}\left( \frac{1}{2}-\frac{1}{{{\epsilon }_{c}}-1} \right)\times \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{\left( {{\epsilon }_{c}}-1 \right)}^{\frac{2}{{{\epsilon }_{c}}-1}}}f\left( \Delta {{\eta }_{B}} \right){{\left( \frac{k}{{{\mathscr{H}}_{B+}}} \right)}^{\frac{2{{\epsilon }_{c}}}{{{\epsilon }_{c}}-1}}}, \\ \end{align}$ (23)
for small k, where
$\begin{array}{*{20}{c}}{f\left( {\Delta {\eta _B}} \right) = \left[ {\left( {1 - \frac{{{l^2}\Delta {\eta _B}}}{{2{\mathscr{H}_{B + }}}}} \right)\cosh \left( {l\Delta {\eta _B}} \right) + \frac{l}{2}\left( {\frac{1}{{{\mathscr{H}_{B + }}}} - } \right.} \right.}\\{{{\left. {\left. {\Delta {\eta _B} + \frac{{{l^2}}}{{4{\mathscr{H}_{B + }}}}\Delta \eta _B^2} \right)\sinh \left( {l\Delta {\eta _B}} \right)} \right]}^2}.}\end{array}$
1.2 Broad bounceNow we consider the broad bounce (10). Because of the complex mathematical expression, we only give some conclusions. For example, the first matric element of $\mathscr{M}^{(2, 1)}$ is
$\begin{align} & \mathscr{M}_{11}^{\left( 2,1 \right)}=-\left[ \left( \sqrt{\text{ }\!\!\pi\!\!\text{ }}\left( \left( -2\left( {{\epsilon }_{c}}-3 \right)H_{{{v}_{1}}}^{\left( 1 \right)}\left( k\left( -{{\eta }_{B-}}+ \right. \right. \right. \right. \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. {{{\tilde{\eta }}}_{B-}} \right) \right)-2\left( {{\epsilon }_{c}}-1 \right)k\left( {{\eta }_{B-}}- \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. {{{\tilde{\eta }}}_{B-}} \right)H_{1+{{v}_{1}}}^{\left( 1 \right)}\left( k\left( -{{\eta }_{B-}}+ \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. {{{\tilde{\eta }}}_{B-}} \right) \right){{D}_{F-\frac{1}{2}}}\left( G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right)- \\ & \ \ \ \ \ \ \ \ \ \ \ {{a}_{B}}\left( 1-{{\epsilon }_{c}} \right)\left( {{\eta }_{B-}}-{{{\tilde{\eta }}}_{B-}} \right)H_{{{v}_{1}}}^{\left( 1 \right)}\left( k\left( -{{\eta }_{B-}}+ \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. {{{\tilde{\eta }}}_{B-}} \right) \right)\left( -\left( -2+\sqrt{6} \right){{a}_{B}}\alpha \left( {{\eta }_{B}}- \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. {{\eta }_{B-}} \right){{D}_{F-\frac{1}{2}}}\left( G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right)- \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. \left. 2\sqrt{\sqrt{6}\alpha }{{D}_{F+\frac{1}{2}}}\left( G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right) \right) \right) \right]/ \\ & \ \ \ \ \ \ \ \ \ \ \ \left[ 4\sqrt[4]{6}{{a}_{B}}\left( 1-{{\epsilon }_{c}} \right)\sqrt{-{{\eta }_{B-}}+{{{\tilde{\eta }}}_{B-}}} \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left( -\text{i}\sqrt{\alpha }{{D}_{-F+\frac{1}{2}}}\left( \text{i}G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right) \right. \\ & \ \ \ \ \ \ \ \ \ \ \ {{D}_{F-\frac{1}{2}}}\left( G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right)+{{D}_{-F-\frac{1}{2}}} \\ & \ \ \ \ \ \ \ \ \ \ \ \left( \text{i}G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right)\left( \sqrt[4]{6}{{a}_{B}}\alpha \left( {{\eta }_{B}}+{{\eta }_{B-}} \right) \right. \\ & \ \ \ \ \ \ \ \ \ \ \ {{D}_{F-\frac{1}{2}}}\left( G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right)+ \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. \left. \left. \sqrt{\alpha }{{D}_{F+\frac{1}{2}}}\left( G\left( -{{\eta }_{B}}+{{\eta }_{B-}} \right) \right) \right) \right) \right) \right] \\ \end{align}$ (24)
and the first matric element of $\mathscr{M}^{(3, 2)}$ is
$\begin{align} & M_{11}^{\left( 3,2 \right)}=\frac{\text{i}}{4\left( {{\epsilon }_{\text{inf}}}-1 \right)\sqrt{-{{\eta }_{B+}}+{{{\tilde{\eta }}}_{B+}}}}\sqrt{\text{ }\!\!\pi\!\!\text{ }}\left( \left( 2\left( {{\epsilon }_{\text{inf}}}- \right. \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. 3 \right)H_{{{v}_{2}}}^{\left( 2 \right)}\left( k\left( -{{\eta }_{B+}}+{{{\tilde{\eta }}}_{B+}} \right) \right)+2\left( {{\epsilon }_{\text{inf}}}- \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. 1 \right)k\left( {{\eta }_{B+}}-{{{\tilde{\eta }}}_{B+}} \right)H_{1+{{v}_{2}}}^{\left( 2 \right)}\left( k\left( -{{\eta }_{B+}}+ \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. {{{\tilde{\eta }}}_{B+}} \right) \right){{D}_{-F-\frac{1}{2}}}\left( \text{i}G\left( -{{\eta }_{B}}+{{\eta }_{B+}} \right) \right)- \\ & \ \ \ \ \ \ \ \ \ \ \ \text{i}{{a}_{B}}\left( 1-{{\epsilon }_{\text{inf}}} \right)\left( -{{\eta }_{B+}}-{{{\tilde{\eta }}}_{B+}} \right)H_{{{v}_{2}}}^{\left( 2 \right)} \\ & \ \ \ \ \ \ \ \ \ \ \ \left( k\left( -{{\eta }_{B+}}+{{{\tilde{\eta }}}_{B+}} \right) \right)\left( \text{i}\left( 2+\sqrt{6} \right) \right. \\ & \ \ \ \ \ \ \ \ \ \ \ {{a}_{B}}\alpha \left( {{\eta }_{B}}-{{{\tilde{\eta }}}_{B+}} \right){{D}_{-F-\frac{1}{2}}}\left( \text{i}G\left( -{{\eta }_{B}}+ \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. {{\eta }_{B+}} \right) \right)+2\sqrt[4]{6}\sqrt{\alpha }{{D}_{-F+\frac{1}{2}}}\left( \text{i}G\left( -{{\eta }_{B}}+ \right. \right. \\ & \ \ \ \ \ \ \ \ \ \ \ \left. \left. \left. \left. {{\eta }_{B+}} \right) \right) \right) \right). \\ \end{align}$ (25)
The other matric elements are omitted here.
2 The figures of power spectrumUsing the technology and above conclusion to get |c3, 1-c3, 22|, namely PT, we get the power spectrum of tensor perturbation in bounce inflation.
Figure 2 shows the spectra with different bounce durations. Considering that the bounce no longer contains symmetry in broad bounce, we plot Fig. 3, in which the first wave crest of spectrum is depressed with the increasing of asymmetry of bounce shape at a determined bounce duration, and this feature turns more obvious in broad bounce.
Fig. 2
Download: JPG
larger image


Fig. 2 $\mathscr{H}_{B-}=-\mathscr{H}_{B+}$


Fig. 3
Download: JPG
larger image


Fig. 3 Power spectra with different bounce times

Figures 4(a), 4(b), and 4(c) show the differences between the narrow and broad bounces. The curve of the second order turns to be abnormal when bounce turns to be broad. Though the bounce inflation has not been verified by experiment, some fitting studies have been carried out, such as Ref.[25]. If we detect the power spectrum in such a shape in future, we can accurately check the theory and distinguish between the broad bounce and the narrow bounce.
Fig. 4
Download: JPG
larger image


Fig. 4 Contrast between narrow bounce and broad bounce

The first order for narrow bounce, and the second order for broad bounce.
3 DiscussionThe bounce inflation is successful in solving the initial singularity problem of inflation and is also competitive in explaining the power deficit in CMB at large scale. This might provide a chance to comprehend the origin of inflation thoroughly. Theoretically, previous work successfully deals with the case with the narrow bounce. It is not only for a much extensive prediction, but also for the completion of the theory. We naturally generalize the narrow bounce to the broad bounce. In this study, we calculate the tensor perturbation in the bounce inflation scenario with the broad bounce. We get the result in a more precise approximation, and compare our result with that in narrow bounce model.
References
[1] Guth A H. Inflationary universe:a possible solution to the horizon and flatness problems[J]. Physical Review D, 1981, 23(2): 347-356.
[2] Linde A D. A new inflationary universe scenario:a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems[J]. Physics Letters B, 1982, 108(6): 389-393. DOI:10.1016/0370-2693(82)91219-9
[3] Albrecht A, Steinhardt P J. Cosmology for grand unified theories with radiatively induced symmetry breaking[J]. Physical Review Letters, 1982, 48(17): 1220-1223. DOI:10.1103/PhysRevLett.48.1220
[4] Komatsu E, Smith K M, Dunkley J, et al. Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation[C]//Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on. IEEE, 2010: 1-4.
[5] Piao Y S, Feng B, Zhang X. Suppressing the CMB quadrupole with a bounce from the contracting phase to inflation[J]. Physical Review D, 2013, 88(6): 90-103.
[6] Piao Y S. Possible explanation to a low CMB quadrupole[J]. Physical Review D, 2005, 71(8): 287-294.
[7] Piao Y S, Tsujikawa S, Zhang X. Inflation in string-inspired cosmology and suppression of CMB low multipoles[J]. Classical & Quantum Gravity, 2003, 21(18): 4455-4461.
[8] Biswas T, Mazumdar A. Super-inflation, non-singular bounce, and low multipoles[J]. Classical & Quantum Gravity, 2013, 31(2): 25019-25025.
[9] Liu Z G, Guo Z K, Piao Y S. Obtaining the CMB anomalies with a bounce from the contracting phase to inflation[J]. Physical Review D, 2013, 88(6): 063539. DOI:10.1103/PhysRevD.88.063539
[10] Liu Z G, Guo Z K, Piao Y S. CMB anomalies from an inflationary model in string theory[J]. European Physical Journal C, 2014, 74(8): 3006. DOI:10.1140/epjc/s10052-014-3006-0
[11] Falciano F T. Classical bounce:constraints and consequences[J]. Physical Review D, 2012, 77(8): 284-299.
[12] Lilley M, Lorenz L, Clesse S. Observational signatures of a non-singular bouncing cosmology[J]. Journal of Cosmology & Astroparticle Physics, 2011, 6(6): 1167-1183.
[13] Mielczarek J. Gravitational waves from the big bounce[J]. Journal of Cosmology & Astroparticle Physics, 2008, 2008(11): 458-461.
[14] Xia J Q, Cai Y F, Li H, et al. Evidence for bouncing evolution before inflation after BICEP2[J]. Physical Review Letters, 2014, 112(25): 251301. DOI:10.1103/PhysRevLett.112.251301
[15] Wang Y T, Piao Y S. Parity violation in pre-inflationary bounce[J]. Physics Letters B, 2015, 741(C): 55-60.
[16] Qiu T, Wang Y T. G-bounce inflation:towards nonsingular inflation cosmology with galileon field[J]. Journal of High Energy Physics, 2015, 4(4): 1-28.
[17] Wan Y, Qiu T, Huang F P, et al. Bounce inflation cosmology with standard model higgs boson[J]. Journal of Cosmology & Astroparticle Physics, 2015(12): 19.
[18] Cai Y, Wan Y, Li H G, et al. The effective field theory of nonsingular cosmology[J]. Journal of High Energy Physics, 2017(1): 90.
[19] Cai Y, Li H G, Qiu T, Piao Y S. The effective field theory of nonsingular cosmology:Ⅱ[J]. The European Physical Journal C, 2017, 77(6): 369. DOI:10.1140/epjc/s10052-017-4938-y
[20] Cai Y, Piao Y S. A covariant Lagrangian for stable nonsingular bounce[J]. Journal of High Energy Physics, 2017, 2017(9): 27. DOI:10.1007/JHEP09(2017)027
[21] Cai Y, Wang Y T, Piao Y S. Pre-inflationary primordial perturbations[J]. Phys Rev D, 2015, 92.
[22] Battefeld D, Peter P. A critical review of classical bouncing cosmologies[J]. Physics Reports, 2014, 571: 1-66.
[23] Lehners J L. Cosmic bounces and cyclic universes[J]. Classical & Quantum Gravity, 2011, 28(20): 3990-3997.
[24] Guzzetti M C, Bartolo N, Liguori M, et al. Gravitational waves from inflation[J]. Nuovo Cimento Rivista Serie, 2016, 39: 399-495.
[25] Li H G, Cai Y, Piao Y S. Towards the bounce inflationary gravitational wave[J]. European Physical Journal C, 2016, 76(12): 699. DOI:10.1140/epjc/s10052-016-4554-2


相关话题/图片 原文 北京 中国科学院 大学物理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 一种多视角高精度图片的深度估计方法
    一种多视角高精度图片的深度估计方法李剑,陈宇航1.北京邮电大学人工智能学院收稿日期:2020-11-29修回日期:2020-12-17出版日期:2021-10-28发布日期:2021-09-06通讯作者:陈宇航E-mail:lijian@bupt.edu.cn基金资助:国家自然科学基金项目(U163 ...
    本站小编 Free考研考试 2021-12-25
  • 基于TPB的北京市居民低碳通勤选择机制研究
    doi:10.12202/j.0476-0301.2019250张昱,孙岩,刘学敏,北京师范大学地理科学学部,北京师范大学资源经济与政策研究中心,100875,北京基金项目:国家社会科学基金重大资助项目(15ZDA055)详细信息通讯作者:刘学敏(1963—),男,博士,教授.研究方向:区域经济、城 ...
    本站小编 Free考研考试 2021-12-25
  • 北京市通州区降雨时空特征分析
    doi:10.12202/j.0476-0301.2019255李宝1,2,于磊1,3,,,潘兴瑶1,3,鞠琴2,张宇航1,2,赵立军4,杨默远1,31.北京市水科学技术研究院,100048,北京2.河海大学水文水资源学院,210098,江苏南京3.北京市非常规水资源开发利用与节水工程技术研究中心, ...
    本站小编 Free考研考试 2021-12-25
  • 基于对应分析法的北京密怀顺地区地表水回补地下水环境影响评价
    doi:10.12202/j.0476-0301.2020058霍丽涛1,,王博欣1,,,潘增辉1,吴劲2,3,杨朝阳41.河北省水利科学研究院,050051,河北石家庄2.城市水循环与海绵城市技术北京市重点实验室,100875,北京3.北京工业大学,100124,北京4.石家庄污水处理有限公司,0 ...
    本站小编 Free考研考试 2021-12-25
  • 北京理工大学学报2020年总目次(第40卷)
    .北京理工大学学报2020年总目次(第40卷)[J].北京理工大学学报(自然科学版),2020,40(12):1369~1386..[J].TransactionsofBeijingInstituteofTechnology,2020,40(12):1369-1386.二维码(扫一下试试看!)北京理 ...
    本站小编 Free考研考试 2021-12-21
  • 北京理工大学学报2019年总目次(第39卷)
    .北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ...
    本站小编 Free考研考试 2021-12-21
  • 北京理工大学学报2018年总目次(第38卷)
    .北京理工大学学报2018年总目次(第38卷)[J].北京理工大学学报(自然科学版),2018,38(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2018,38(12):1321-1338.二维码(扫一下试试看!)北京理 ...
    本站小编 Free考研考试 2021-12-21
  • 北京低边界层雨滴谱的垂直分布特征
    北京低边界层雨滴谱的垂直分布特征唐继顺1,2,刘晓阳1,?,刘均慧1,李爱国3,王鹏飞41.北京大学物理学院大气与海洋科学系,北京1008712.91197部队,青岛2664053.中国科学院大气物理研究所大塔分部,北京1000204.北京智阳科技有限公司,北京100020收稿日期:2020-12- ...
    本站小编 Free考研考试 2021-12-20
  • 北京市公共服务设施可达性及其对住房价格的影响
    北京市公共服务设施可达性及其对住房价格的影响李然好,龚世泽,高勇?北京大学地球与空间科学学院,北京100871收稿日期:2020-08-13修回日期:2020-12-02出版日期:2021-09-20基金资助:国家自然科学基金(41971331)资助AccessibilityofPublicServ ...
    本站小编 Free考研考试 2021-12-20