研究结果表明:(1)大部分叶片性状和叶片光谱特征呈现出显著的季节性变化,尽管成熟叶片的变异程度较小;(2)重要的是,叶片光谱特征可以准确地预测大部分叶片性状的季节性变异,而且成熟叶片的预测准确度较高;(3)对于某几个性状,PLSR模型预测准确度受到物种的影响,因此PLSR模型不能在单一物种水平准确度预测叶片性状的季节性变化。我们的研究结果为基于遥感高光谱图像(Hyperspectral imaging)的大尺度植物性状及其多样性的研究、制图和长期监测奠定了坚实的基础。
本研究成果以Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: can a general model be applied across a growing season?为题,发表在Remote Sensing of Environment上。西北高原所陈立同副研究为论文第一作者,英国剑桥大学植物科学系David A. Coomes教授为通讯联系人。本研究工作得到了国家留学基金委公派留学项目(CSC No. 201604910438)的支持。
论文链接

图1 21个叶片性状的季节性变化

图2 叶片光谱特征(反射率,Reflectance)的季节性变化
责任编辑:李暄妍