删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国地质大学北京导师教师师资介绍简介-袁国礼教授

本站小编 Free考研考试/2020-05-03

安徽桐城人,2003年于日本国立山形大学获得博士学位。目前任地球科学与资源学院教授,博士生导师,地球化学教研室主任,地球化学学科负责人。主要研究方向为环境地球化学、岩石地球化学。
Email:yuangl@cugb.edu.cn
Tel:**




已发表论文:
[1] Yong Sun, Guo-Li Yuan*, Jun Li, Gen-Hou Wang. High-resolution sedimentary records of some organochlorine pesticides in Yamzho Yumco Lake of the Tibetan Plateau: Concentration and composition. Science of the Total Environment 469-475, 615, 2018.
[2] A review of POPs in the fragile critical zone of the Tibetan Plateau: transport and transformation. Acta Geochimica 2017, DOI: 10.1007/s11631-017-0173-3.
[3] The emerging source of polycyclic aromatic hydrocarbons from mining in the Tibetan Plateau: Distributions and contributions in background soils. Science of the Total Environment 64-71, 584-585, 2017.
[4] Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. Journal of Geochemical Exploration, 110-118, 173, 2017. (2017, Feb.)
[5] Evidence for persistent organic pollution released from melting glacier in the central Tibetan Plateau, China. Environmental Pollution 178-185, 220, 2017. (2017, Jan)
[6] One century of air deposition of hydrocarbons recorded in travertine in North Tibetan Plateau, China: Sources and evolution. Science of the Total Environment. 560-561, 212-217, 2016. (Aug. 1)
[7] Major ionic geochemistry of the Nansihu Lake Basin rivers, North China: chemical weathering and anthropogenic load under intensive industrialization. Environmental Earth Sciences 75(6), 453(1-16), 2016.
[8] Source identification and health risk assessment of Persistent Organic Pollutants (POPs) in the topsoils of typical petrochemical industrial area in Beijing, China. Journal of Geochemical Exploration 158, 177-185, 2015.
[9] Concentration and chiral signature of chlordane in soils and sediments of the Central Tibetan Plateau, China: Transformation in the surficial process. Environmental Pollution 206, 282-288, 2015. (15, Nov.)
[10] Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling. Environmental Pollution, 203, 137-144, 2015. (15, Aug.)
[11] Polybrominated diphenyl ethers in surface soils near the Changwenluozha Glacier of Central Tibetan Plateau, China. Science of the Total Environment. 511 (1), 399-406, 2015. (1, April)
[12] Polychlorinated biphenyls in surface soils of the Central Tibetan Plateau: Altitudinal and chiral signatures. Environmental Pollution,196 (1), 134-140, 2015. (15, January)
[13] Chiral signature of α-HCH and o,p’-DDT in the soil and grass of the Central Tibetan Plateau, China. Science of the Total Environment. 500-501 (1), 147-154, 2014. (15, Sep.)
[14] Factors influencing the accumulation of organochlorine pesticides in the surface soil across the Central Tibetan Plateau, China. Environmental Science-Processes & Impacts, 16 (5), 1022-1028, 2014. (15, May)
[15] Persistent organic pollutants (POPs) in the topsoil of typical urban renewal area in Beijing, China: Status, sources and potential risk. Journal of Geochemical Exploration, 138 (1), 94-103, 2014. (15, March)
[16] Persistent organic pollutants in soil near the Changwengluozha glacier of the Central Tibetan Plateau, China: Their sorption to clays and implication. Science of the Total Environment 472 (1), 309-315, 2014. (15, February)
[17] Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. Journal of Geochemical Exploration 136 (1), 40-47, 2014. (15, January)
[18] Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. Journal of Geochemical Exploration 130 (1), 15–21, 2013. (15, July)
[19] The fractional patterns of polybrominated diphenyl ethers in the soil of the central Tibetan Plateau, China: The influence of soil components. Environmental Pollution 170 (1), 183-189, 2012. (15, November)
[20] Altitudinal distribution of polybrominated diphenyl ethers (PBDEs) in the soil along Central Tibetan Plateau, China. Science of the Total Environment 433 (1), 44–49, 2012. (1, September)
[21] Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. Journal of Hazardous Materials, 185 (1), 336–345, 2011. (15, January)
[22] Levels of organochlorine pesticides in natural water along the Yangtze River, from headstream to estuary, and factors determining these levels. Environmental Earth Sciences, 62 (5), 953–960, 2011. (1, March)

[23] 藏北羌塘泛非和印支事件的记录:来自俄久卖变质 杂岩地球化学与锆石UPb年代学的证据 岩石学报 2015, 31(4), 1137-1152.
[24] 古特提斯洋俯冲碰撞在南羌塘的岩浆岩证据:西藏荣玛乡冈塘错花岗岩 岩石学报 2015, 31(7), 2070-2088.
[25] Reconstruction Paleoclimate based on sporopollen record of Re'nacuo lake, Tibet Acta Geologica Sinica, 2014, 88(4), 1239-1251.
[26] Mesozoic and Cenozoic deformations in the Raggyorcaka area, Tibet: implications for the tectonic evolution of the North Qiangtang terrane, Journal of the Geological Society, doi:10.1144/jgs2014-075.
[27] Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: Implications for the Late Triassic subduction of the Paleo-Tethys Ocean, Gondwana Research 2012, 22, 470-481.
[28] Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic–early Jurassic tectonics associated with the Paleo-Tethys Ocean International Journal of Earth Sciences 2017, DOI:10.1007//s00531-017-1526-1


主要项目成果:
1.内陆湖相沉积物中环境污染物的沉积历史重建;
2.青藏高原环境污染物的分布特征、来源、迁移及归趋;
3.矿区及污染场地环境污染物的源分析及风险评价;
4. 全球变暖背景下冰川消融的环境行为与效应。
5. 青藏高原龙木错--双湖缝合带、班公湖—怒江缝合带的深部地质过程及演化
6. 青藏高原造山带地区区域填图












硕士研究生招生方向(环境地球化学、岩石地球化学):环境地球化学、勘查或应用地球化学、岩浆作用与深部过程
博士研究生招生方向(环境地球化学、岩石地球化学):环境地球化学、勘查或应用地球化学、岩浆作用与深部过程


本科生授课:地球化学、有机地球化学、表生地球化学、全球变化
研究生授课:环境地球化学、专业英语



相关话题/北京 中国地质大学