Effect of Adjuvant on Conductivity and Deposition of Electrochargeable Liquid
REN LiRui,, CHEN FuLiang,, YIN MingMing,Institute of Plant Protection, Chinese Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management in Crop, Ministry of Agriculture, Beijing 100193通讯作者:
第一联系人:
责任编辑: 岳梅
收稿日期:2018-06-13接受日期:2018-07-20网络出版日期:2018-12-01
基金资助: |
Received:2018-06-13Accepted:2018-07-20Online:2018-12-01
摘要
关键词:
Abstract
Keywords:
PDF (440KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
任立瑞, 陈福良, 尹明明. 助剂对静电喷雾液剂电导率及沉积量的影响[J]. 中国农业科学, 2018, 51(23): 4459-4469 doi:10.3864/j.issn.0578-1752.2018.23.006
REN LiRui, CHEN FuLiang, YIN MingMing.
0 引言
【研究意义】长期以来,我国植保施药技术和机械比较落后,农药有效利用率只有20%—30%,而真正到达靶标的药量仅为施药量的1%—3%[1],由此带来农药浪费、环境污染等一系列问题。静电喷雾技术是通过利用不同的充电方式使雾滴荷电,并在喷头和靶标之间形成静电场,从而具有“细雾穿透效应、附着增强效应、静电环绕效应”的优点[2]。与常规喷雾相比,可节省农药30%—50%[3,4],防治效果可提高两倍以上[5],在农药使用上得到广泛应用[6,7]。当前静电喷雾在国内外已得到较为深入的研究,在静电喷雾作业参数如静电电压、喷雾距离等以及药械研制和静电无人机喷雾等诸多方面取得一定的研究成果[2,8-12]。影响静电喷雾的主要因素有药液雾化程度、雾滴荷电效果以及雾滴运行、沉积过程等[13,14,15,16],其中影响雾滴荷电效果的因素众多,如电极电压、喷液理化性能、气流速度以及喷头种类等[8,15,17-18]。其中以充电电压和药液的理化性能影响最大[18]。因此对静电喷雾液剂理化性能进行研究,可为静电喷雾技术发展提供科学指导,具有重要的现实意义。【前人研究进展】喷液的理化性能包括黏度、表面张力、电导率以及介电常数等。研究表明,液体表面张力和黏度是影响雾化的主要阻力[19],通过影响雾滴粒径进而影响荷电量;介电常数是影响电荷弛豫时间的主要因素,对于感应荷电方式而言,药液的介电常数需限制在一定范围内,否则感应荷电将会受到限制[20]。王军锋等通过研究电导率、黏度、表面张力等介质物性,发现介质的黏度对液滴的荷电能力有明显的抑制作用,而表面张力与液滴荷质比呈正比关系。电导率越大,荷质比随荷电电压的增大增幅越大,但当介质的电导率较小时,荷电电压对液滴荷质比起主导作用[21]。电导率能够影响雾滴粒径和带电量,对雾滴荷电效果有重要影响[22];冼福生等[23]在对雾滴荷电效果研究中发现,随电导率的增大,雾滴荷电逐渐增多,与此同时雾滴粒径逐渐减小,从而荷电效果显著增大,因此雾滴所带的表面电荷更大;MASKI等[24]研究表明,由于地下水电导率高于地表水,因此地下水的荷电效果更好;AHMED等[25]研究同样表明高电导率液体能有效提高雾滴荷电量。【本研究切入点】前人研究表明喷液的电导率对雾滴荷电效果有重要影响,但关于如何提高静电喷雾液剂电导率,以及电导率与沉积量之间的相关性研究较少。目前,静电喷雾液剂选取对环境污染较大的重芳烃或二线油等作为溶剂,农乳500#为导电剂,直链中级醇为助溶剂,药液所产生的带电电荷有限[26,27,28],雾滴带电电荷偏小成为制约静电喷雾发展的瓶颈。因此筛选绿色环保助剂,提高静电喷雾液剂的电导率和沉积量意义重大。【拟解决的关键问题】通过对溶剂和助溶剂的筛选,获得显著提高静电喷雾液剂电导率的环保型溶剂与助溶剂。在此基础上,改变助溶剂的质量分数,研究配方各组分对电导率的影响,探究电导率与沉积量之间的关系,改善雾滴荷电效果,提高静电喷雾沉积量,为提高农药利用率,降低生产成本提供科学依据。1 材料与方法
试验于2017年在中国农业科学院植物保护研究所完成。1.1 药剂、植物材料与仪器
95%阿维菌素原药(abamectin,山东潍坊润丰化工股份有限公司);98%呋虫胺原药(dinotefuran,河北兴柏农业科技有限公司)。溶剂:多元醇混合酯(HDBE,乙二醇二醋酸酯﹕乙二醇单醋酸酯为 8﹕2,广州印田新材料有限公司);改性氨基乙醇酯(NCC,广州印田新材料有限公司);S200#(苏州华伦化工有限公司)。助溶剂:N-甲基吡咯烷酮(分析纯,国药集团化学试剂有限公司);二甲亚砜(分析纯,国药集团化学试剂有限公司);异佛尔酮(分析纯,国药集团化学试剂有限公司)。其他溶剂:丙酮(分析纯,北京化工厂);甲醇(色谱纯,Fisher scientific);乙腈(色谱纯,Fisher scientific)。作物:黄瓜(品种中农37号,中蔬种业科技有限公司);番茄(品种中杂9号,中国农业科学院蔬菜花卉研究所)。奥利龙Star pH电导率仪(配2-Electrode conductivity cell 013016MD不锈钢电极,Thermo Electron Corporation);DJ-1型旋转式黏度计(配0号转子,上海天平仪器厂);恒温干燥箱(北京西城区医疗器械二厂);Yaxin-1242叶面积仪(北京雅欣理仪科技有限公司);ESS BP2.5静电喷雾器(美国ESS公司);N-1001旋转蒸发仪(EYELA东京理化公司);Agilent 1200 Infinity高效液相色谱仪(安捷伦科技有限公司);AA-200 型万分之一电子天平(赛多利斯科学仪器(北京)有限公司);隔水式培养箱(上海一恒科学仪器有限公司);DHJF-4002型低温搅拌反应浴(郑州长城科工贸有限公司);全自动闭口闪点测定仪(山东傅山同业分析仪器厂);ZB-0 1/8型空气压缩机(上海丽涛精细化工有限公司)。
1.2 试验方法
1.2.1 静电喷雾液剂的配制 分别配制一系列不同助溶剂质量分数的静电喷雾液剂,其中农药有效成分质量分数分别为阿维菌素 0.5%,呋虫胺3.5%,助溶剂质量分数为0、3%、5%、7%、10% 5个梯度,最后由溶剂补齐。1.2.2 静电喷雾液剂的理化性能测定 根据静电喷雾液剂质量技术指标标准,分别测定各个试样冷热贮稳定性、黏度、挥发率和闪点等技术指标。
1.2.3 电导率的测定 采用奥利龙Star pH电导率仪对稳定性合格试样进行电导率测定,每个试样平行测定3次,取其算术平均值为该试样的电导率。
1.2.4 静电喷雾方法 采用ESS BP 2.5静电喷雾器进行喷施,喷头距靶标的水平距离为1 m左右,垂直距离为50 cm左右,同时将空气压缩机压力调到60—70 psi,为静电喷雾器提供稳定气压,将喷头对准供试植株叶片喷雾10 s,每个处理3个重复。
1.2.5 叶面积的测定 用Yaxin-1242叶面积仪测定作为喷雾靶标的黄瓜和番茄叶片的叶面积,每个待测叶片叶面积重复测定3次取其平均值。
1.2.6 沉积量的测定 分别选取温室内种植50 d及70 d的黄瓜和番茄叶片作为供试靶标。选取位置相对的两叶片,测定叶面积。用胶条分别贴在一片叶的正面和另一片叶的背面,测定药液在靶标正面和背面的沉积量。
待喷雾结束后,立即摘取叶片,撕下贴在叶片上的胶条,并剪碎至100 mL烧杯中,用30、20 mL丙酮,依次浸泡超声提取15 min,用脱脂棉过滤提取液至三角瓶中,并且使用丙酮反复冲洗滤渣5次,将提取液用旋转蒸发仪浓缩至干,流动相定容,过0.45 μm有机滤膜,使用高效液相色谱仪测定阿维菌素和呋虫胺的质量分数。
1.2.7 高效液相色谱分析条件 阿维菌素:Waters sunfire-C18色谱柱(4.6 mm×150 mm,5 μm),流动相V(甲醇)﹕V (乙腈)﹕V(水)= 42.5﹕42.5﹕15,流速1 mL·min-1,紫外检测波长245 nm,进样体积5 μL,柱温30℃,保留时间11 min;呋虫胺:Waters sunfire-C 18色谱柱(4.6 mm×150 mm,5 μm),流动相V(甲醇)﹕V(水)= 20﹕80,流速1 mL·min-1,紫外检测波长270 nm,进样体积5 μL,柱温30℃,保留时间6 min。
2 结果
2.1 静电喷雾液剂的筛选
配方组成见表1。试验结果表明以上6个配方低温稳定性良好,热贮分解率均<5%(质量技术指标要求<5%),闭口闪点在85℃以上(质量技术指标要求>40℃),黏度在2 mPa·s以下(质量技术指标要求≤10 mPa·s),挥发性<10%(质量技术指标要求<30%)。以上各项均符合静电喷雾液剂质量技术指标要求。Table 1
表1
表1静电喷雾液剂配方组成成分
Table 1
配方 Formula | 有效成分 Active ingredient | 助溶剂 Cosolvent | 溶剂 Solvent |
---|---|---|---|
1 | 阿维菌素 Abamectin | 二甲亚砜 Dimethyl sulfoxide | 多元醇混合酯HDBE |
2 | 阿维菌素 Abamectin | 异佛尔酮Isophorone | 多元醇混合酯HDBE |
3 | 阿维菌素 Abamectin | 二甲亚砜Dimethyl sulfoxide | 改性氨基乙醇酯NCC |
4 | 呋虫胺Dinotefuran | 二甲亚砜Dimethyl sulfoxide | 多元醇混合酯HDBE |
5 | 呋虫胺Dinotefuran | N-甲基吡咯烷酮N-Methyl pyrrolidone | 多元醇混合酯HDBE |
6 | 呋虫胺Dinotefuran | 二甲亚砜Dimethyl sulfoxide | 改性氨基乙醇酯NCC |
CK1 | 阿维菌素Abamectin | 二甲亚砜Dimethyl sulfoxide | S200# |
CK2 | 呋虫胺Dinotefuran | 二甲亚砜Dimethyl sulfoxide | S200# |
新窗口打开|下载CSV
2.2 静电喷雾液剂电导率的测定
2.2.1 有效成分对静电喷雾液剂电导率的影响 由表2可以看出,HDBE、NCC电导率分别为0.10、0.45 μs·cm-1,表3配方1—3中助溶剂添加量为0时电导率分别为0.10、0.11、0.44 μs·cm-1,说明阿维菌素对制剂整体电导率几乎无影响,阿维菌素为非极性农药,非极性组分无法电离出离子,其理论电导率为0;由表3中配方4—6可知,当有效成分为呋虫胺,溶剂为HDBE、NCC,在不加助溶剂条件下,制剂整体电导率为10.42、10.41、51.23 μs·cm-1,其测定值显著高于溶剂的电导率,呋虫胺为极性农药,在溶液中可电离出大量离子(其理论电导率在不同溶剂中分别为10.32和50.78 μs·cm-1),呋虫胺的加入显著提高了制剂整体的电导率。表3中呋虫胺静电喷雾液剂的电导率都明显高于阿维菌素。呋虫胺在制剂中的质量分数比阿维菌素高7倍,但电导率高出近百倍。Table 2
表2
表2溶剂、助溶剂电导率测定
Table 2
电导率Conductivity (μs·cm-1) | |||||
---|---|---|---|---|---|
HDBE | NCC | S200# | 二甲亚砜 Dimethyl sulfoxide | N-甲基吡咯烷酮 N-Methyl pyrrolidone | 异佛尔酮 Isophorone |
0.10±0.002 | 0.45±0.005 | 0 | 1.23±0.012 | 1.22±0.07 | 0.25±0.004 |
新窗口打开|下载CSV
Table 3
表3
表3静电喷雾液剂电导率测定
Table 3
助溶剂质量分数 Mass fraction of cosolvent (%) | 电导率Conductivity (μs·cm-1) | |||||||
---|---|---|---|---|---|---|---|---|
阿维菌素Abamectin | 呋虫胺Dinotefuran | |||||||
配方1 Formula 1 | 配方2 Formula 2 | 配方3 Formula 3 | CK1 | 配方4 Formula 4 | 配方5 Formula 5 | 配方6 Formula 6 | CK2 | |
0 | 0.10±0.003e | 0.11±0.002e | 0.44±0.006c | 0b | 10.42±0.011e | 10.41±0.014e | 51.23±0.311b | — |
3 | 0.23±0.011d | 0.12±0.003d | 0.50±0.008b | 0b | 14.23±0.062d | 12.66±0.261d | 59.03±0.732a | — |
5 | 0.36 ±0.018c | 0.13±0.004c | 0.48±0.011b | 0b | 16.69±0.232c | 14.58±0.224c | 52.20±0.948ab | — |
7 | 0.48±0.004b | 0.15±0.005b | 0.51±0.015b | 0b | 20.37±0.017b | 19.80±0.013b | 55.80±0.154ab | — |
10 | 0.66±0.011a | 0.16±0.002a | 0.55±0.017a | 0.10±0.010a | 22.33±0.118a | 20.27±0.219a | 54.30±0.068ab | 4.20±0.122 |
新窗口打开|下载CSV
2.2.2 助溶剂和溶剂对静电喷雾液剂电导率的影响 由表2可知,除有效成分对制剂电导率影响之外,由于3种助溶剂均有一定的电导率,因此各配方电导率均随助溶剂含量的增加而增大,差异显著。对比表3中配方1与2、配方4与5,当以HDBE为溶剂时,随着助溶剂的增加,药液的电导率均能得到较为显著的增加。因此在实际生产应用中,当溶剂电导率较小时,可增加助溶剂用量来提高制剂电导率。
对比表3中配方1与3、配方4与6可知,以助溶剂二甲亚砜配制的静电喷雾液剂,当溶剂为HDBE时,5个浓度梯度的电导率差异显著,当溶剂为NCC时,电导率测定结果之间的差异减小。
对比表3中配方1、3与CK1;配方4、6与CK2,当助溶剂二甲亚砜含量为10%时,以HDBE为溶剂配制的两种静电喷雾液剂电导率分别高出S200# 6.60、5.50倍;以NCC为溶剂高出S200# 5.32、12.93倍。
2.2.3 制剂各组分之间相互作用对电导率的影响 由表2、表3可知,按理论计算阿维菌素在HDBE、NCC中电导率为0,呋虫胺在HDBE和NCC中电导率分别为10.32、50.78 μs·cm-1,由此计算各个配方加权平均的理论电导率,见表4。对比表3、表4可知,各配方加权平均数理论电导率与实测电导率有较大差距,说明制剂整体电导率并非各个组分电导率的加权平均数,而是由各组分相互作用的结果。配方1、2的理论值远低于实测值,配方3加权平均的理论电导率与实测值接近。对于呋虫胺静电喷雾液剂分析发现,配方4、5理论值与实测值差距较大,而配方6几乎无差异。
Table 4
表4
表4加权平均的理论电导率
Table 4
助溶剂质量分数 Mass fraction of cosolvent (%) | 理论电导率 Theoretical conductivity (μs·cm-1) | |||||
---|---|---|---|---|---|---|
阿维菌素Abamectin | 呋虫胺Dinotefuran | |||||
配方1 Formula 1 | 配方2 Formula 2 | 配方3 Formula 3 | 配方4 Formula 4 | 配方5 Formula 5 | 配方6 Formula 6 | |
0 | 0.10 | 0.10 | 0.45 | 10.42 | 10.42 | 51.21 |
3 | 0.13 | 0.11 | 0.47 | 10.45 | 10.45 | 51.24 |
5 | 0.16 | 0.12 | 0.49 | 10.47 | 10.47 | 51.25 |
7 | 0.18 | 0.12 | 0.50 | 10.50 | 10.49 | 51.27 |
10 | 0.21 | 0.12 | 0.53 | 10.53 | 10.52 | 51.29 |
新窗口打开|下载CSV
2.3 静电喷雾液剂沉积量的测定及静电包抄效应的评价
2.3.1 溶剂和助溶剂对静电喷雾液剂在蔬菜叶片正面沉积量的影响 对比表5中配方1与3、配方4与6,以二甲亚砜为助溶剂时,当溶剂为HDBE时,黄瓜和番茄叶片正面的沉积量与助溶剂质量分数呈显著正相关,且沉积量增幅较大;当溶剂为NCC时,沉积量随助溶剂质量分数的提高也表现出递增趋势,但增幅较小。另外,分别对比配方1与2、配方4与5可知,以溶剂HDBE配制的静电喷雾液剂,沉积量随助溶剂质量分数的提高增幅较大,助溶剂质量分数对沉积量影响差异显著。Table 5
表5
表5靶标正面沉积量
Table 5
靶标 Target | 助溶剂质量分数Mass fraction of cosolvent (%) | 沉积量Deposition (μg·cm-2) | |||||||
---|---|---|---|---|---|---|---|---|---|
阿维菌素Abamectin | 呋虫胺Dinotefuran | ||||||||
配方1 Formula 1 | 配方2 Formula 2 | 配方3 Formula 3 | CK1 | 配方4 Formula 4 | 配方5 Formula 5 | 配方6 Formula 6 | CK2 | ||
黄瓜Cucumber | 0 | 2.12±0.11c | 2.12±0.23c | 6.80±0.10b | 1.18±0.13 | 13.40±1.22c | 13.40±1.24c | 32.90±2.44ab | — |
3 | 2.83±0.32c | 2.74±0.11bc | 7.26±0.52ab | — | 20.48±0.41bc | 17.01±0.83bc | 30.10±0.36b | — | |
5 | 5.04±0.20bc | 3.18±0.09bc | 7.52±0.21ab | — | 23.40±2.16b | 20.86±4.52abc | 39.15±3.56a | — | |
7 | 7.51±0.41ab | 3.46±0.40b | 7.93±0.60a | — | 26.41±1.03b | 26.21±1.24ab | 33.00±1.10ab | — | |
10 | 8.76±0.33a | 4.97±0.36a | 7.43±0.30ab | 4.86±0.31 | 31.58±0.67a | 30.54±3.15a | 39.35±1.66a | 20.64±0.97 | |
番茄 Tomato | 0 | 1.77±0.31b | 1.13±0.26c | 6.30±0.34c | — | 8.33±0.43c | 8.33±0.43b | 30.01±0.31c | — |
3 | 2.65±0.22b | 1.71±0.32c | 6.76±0.65b | — | 15.28±1.64bc | 11.01±1.38b | 31.46±0.69b | — | |
5 | 3.03±0.05b | 2.78±0.48b | 6.97±0.21a | — | 16.12±0.60b | 12.05±2.01b | 33.54±0.47a | — | |
7 | 5.27±0.03a | 3.88±0.22a | 6.81±0.55a | — | 20.25±1.28ab | 22.45±1.40a | 34.43±0.77a | — | |
10 | 5.86±0.11a | 4.16±0.60a | 6.46±0.30bc | — | 24.77±1.09a | 23.79±1.60a | 34.45±1.21a | — |
新窗口打开|下载CSV
表中配方3比配方1、2;配方6比配方4、5的沉积量高,这表明采用高电导率的NCC作为溶剂能够明显提高静电喷雾液剂在靶标上的沉积量。
分别对比配方1、3与CK1,加入0、10%二甲亚砜条件下,当溶剂为HDBE时,所配制的阿维菌素静电喷雾液剂在黄瓜叶片正面沉积量均高出S200# 1.80倍。当溶剂为NCC时,高出S200# 5.76、1.53倍;加入10%二甲亚砜配制的呋虫胺静电喷雾液剂,当溶剂分别为HDBE、NCC时配制的呋虫胺静电喷雾液剂高出S200# 1.53、1.91倍。此外,不同配方在黄瓜叶片正、背面的沉积量均高于番茄匀(表5)。
2.3.2 静电包抄效应的评价 通过计算静电喷雾液剂在靶标正、背面叶片上沉积量的比值来评价静电包抄效应,结果见表6。静电喷雾液剂在靶标正、背面上沉积量比值在1.17—2.11,表明药液能在黄瓜和番茄叶片背面达到有效的沉积,具有较强的静电包抄效应,从而可以显著提高在叶背面取食的害虫的防治效果。对于所配制的阿维菌素和呋虫胺静电喷雾液剂,静电包抄效应随助溶剂用量的增加增长趋势不明显,差异不显著。
Table 6
表6
表6靶标正面和背面沉积量之比
Table 6
靶标 Target | 助溶剂质量分数 Mass fraction of cosolvent (%) | 配方1 Formula 1 | 配方2 Formula 2 | 配方3 Formula 3 | 配方4 Formula 4 | 配方5 Formula 5 | 配方6 Formula 6 |
---|---|---|---|---|---|---|---|
黄瓜 Cucumber | 0 | 1.17b | 1.27b | 2.11a | 1.48a | 1.48a | 1.81a |
3 | 1.35a | 1.36a | 1.56b | 1.50a | 1.28b | 1.62b | |
5 | 1.29a | 1.33a | 1.49b | 1.41a | 1.42a | 1.65b | |
7 | 1.30a | 1.22b | 1.70b | 1.30a | 1.39a | 1.69b | |
10 | 1.21a | 1.21b | 1.67b | 1.46a | 1.40a | 1.63b | |
番茄 Tomato | 0 | 1.69a | 1.49ab | 1.63ab | 1.88ab | 1.88a | 1.67a |
3 | 1.64ab | 1.51ab | 1.65ab | 2.01a | 1.85a | 1.66a | |
5 | 1.63ab | 1.54a | 1.79a | 1.76ab | 1.67ab | 1.64a | |
7 | 1.56b | 1.42ab | 1.67ab | 1.84ab | 1.61ab | 1.59a | |
10 | 1.54b | 1.39b | 1.56b | 1.65b | 1.52b | 1.41a |
新窗口打开|下载CSV
2.4 静电喷雾液剂电导率与沉积量相关性
2.4.1 两种有效成分的静电喷雾液剂电导率与在黄瓜叶片正面沉积量关系 制剂电导率和沉积量均随助溶剂用量的增加而增加,且表现出相同的变化趋势,即溶剂和助溶剂对制剂电导率与沉积量的影响趋势一致。当溶剂为HDBE时(图1-A、1-B、1-D、1-E),随着助溶剂用量的增加,制剂电导率和沉积量增幅明显,差异显著。当溶剂为NCC时(图1-C、1-F),制剂电导率增幅减小,沉积量测定结果之间的差异减小。图1
新窗口打开|下载原图ZIP|生成PPT图1制剂电导率与在黄瓜叶片正面沉积量的关系
Fig. 1The relationship between conductivity of preparation and deposition on the front of cucumber leaves
对比图1中A—C与D—F可知,呋虫胺静电喷雾液剂与阿维菌素电导率与沉积量在不同配方中的变化趋势一致。由此说明助剂种类和用量的改变对于极性不同的农药有效成分配制的静电喷雾液剂影响结果相同。
2.4.2 两种有效成分的静电喷雾液剂电导率与在番茄叶片正面沉积量关系 由图2分析可知,不同配方的电导率和沉积量在番茄叶片上的变化规律与黄瓜完全一致。
图2
新窗口打开|下载原图ZIP|生成PPT图2制剂电导率与在番茄叶片正面沉积量的关系
Fig. 2The relationship between conductivity of preparation and deposition on the front of tomato leaves
3 讨论
以极性大的呋虫胺为农药有效成分时,制剂电导率要远高于非极性农药阿维菌素,分析原因可知,电导率是指物质的传电能力,是衡量溶液携带电流能力的度量值,该能力与粒子类型和浓度有关[29]。呋虫胺在制剂中能够解离出大量离子,在测定电导率时,传输电流能力较强,而阿维菌素在制剂中解离出的离子有限,传输电流较弱,因此呋虫胺静电喷雾液剂电导率远高于阿维菌素。根据电导率实际测定结果与其加权平均电导率相比可知,阿维菌素本身不导电,助溶剂的加入起到了溶剂化作用从而表现出制剂电导率随助溶剂含量增加而增大,这与兰嫒等[30]研究表明DMSO对离子液体产生溶剂化作用导致溶液电导率增大的结论相同。而溶剂NCC本身电离程度大,远高于助溶剂的溶剂化作用,对制剂电导率起主要作用。呋虫胺在不同溶剂中电离程度不同,在极性较弱的HDBE中电离程度较小,但随着极性助溶剂的增加,增强了呋虫胺在溶液中的电离程度,其程度远高于助溶剂的溶剂化作用,对制剂电导率起主要作用。而在极性较强的NCC中呋虫胺电离程度大幅增加,对制剂电导率起主要作用。POLAT等[31]研究证明,在雾滴中添加离子型表面活性剂能更好地促进雾滴荷电,周璐等[20]提出通过加入表面活性剂来增加载电荷的个数,或者加入5%—10%的水使喷液形成连续的导体通路以此提高油基溶剂的导电率,增加雾滴荷电量,这与本试验结果一致。通过对溶剂的筛选,发现采用高电导率的NCC能够明显提高静电喷雾液剂的沉积量。根据感应充电原理,喷液的电导率是影响雾滴荷电的主要原因[20],而雾滴荷电效果又是影响沉积量的重要因素[32]。因此制剂电导率对沉积量具有重要影响。在静电喷雾液剂制备过程中,尽量选择电导率较高的有机溶剂,在保证制剂理化性能合格的条件下,不加或者少加极性助溶剂即可获得较高的沉积量。而当所使用的溶剂电导率较小时,需要考虑提高极性助溶剂用量以期获得较高的沉积量。刘勇良[5]研究表明,喷液电导率对沉积量的影响不显著。这是因为喷液性质不同,刘勇良采用的是非极性溶剂S200#,本试验采用电导率较高的有机溶剂,电导率变化范围差异大。同时试验荷电方式不同,刘勇良采用的是接触式,而本研究采用感应式,不同荷电方式对沉积效果的影响不同[33]。
以HDBE和NCC作为溶剂配制的静电喷雾液剂电导率及沉积量均高出S200#数倍,表明采用环保、极性较强的溶剂代替非极性的S200#,不仅能减少环境污染,而且能够显著提高静电喷雾对靶沉积量。
本研究表明,静电喷雾液剂在黄瓜叶片正、背面的沉积量均高于番茄,这可能与叶片表面结构有关。有研究表明黄瓜叶片呈椭圆形,表面分布稀疏绒毛,表皮细胞大小不等,排列紧密,呈无规则形。番茄叶片呈卵形或长圆形,绒毛密度高,表皮细胞呈椭圆形,垛叠整齐[18]。两种植物叶片形状和表面结构特征可能是造成沉积量差异的重要原因,有待进一步的试验探究。通过对比靶标正、背叶片沉积量的比值发现,所配制的静电喷雾液剂都具有较好的静电包抄效应。但其随助溶剂质量分数的增加增幅较小,差异不显著。原因可能是在感应荷电条件下,试验所制备的静电喷雾液剂电导率变化范围较小,对静电包抄效应影响不显著,因此对于影响静电包抄效应的制剂电导率变化范围的研究有待深入。
4 结论
通过对助剂的筛选获得6个理化性能合格的静电喷雾液剂配方。助剂种类和用量对静电喷雾液剂的电导率和沉积量影响较大,在实践生产中可以通过对电导率的测定,预测对靶标上沉积量的影响,对研制更加经济有效的静电喷雾液剂具有一定的指导意义。采用绿色环保的高沸点溶剂代替重芳烃或二线油等对环境污染较大的溶剂,有利于实现可持续发展。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.3969/j.issn.1003-188X.2011.12.064URL [本文引用: 1]
静电喷雾是高效、低污染新型施药技术,已成为植保领域的研究热点之一。为此,阐述了国外植保机械运用的新技术特征,着重分析了静电喷雾技术的原理,概括了静电喷雾器械的发展现状,并通过对比试验阐明了静电喷雾技术在植保领域的应用效果,最后指出了影响静电喷雾器械推广的主要因素。
DOI:10.3969/j.issn.1003-188X.2011.12.064URL [本文引用: 1]
静电喷雾是高效、低污染新型施药技术,已成为植保领域的研究热点之一。为此,阐述了国外植保机械运用的新技术特征,着重分析了静电喷雾技术的原理,概括了静电喷雾器械的发展现状,并通过对比试验阐明了静电喷雾技术在植保领域的应用效果,最后指出了影响静电喷雾器械推广的主要因素。
. ,
DOI:10.1016/j.cropro.2009.10.006URL [本文引用: 2]
Wastage of agricultural chemicals and ensuing environmental pollution is an issue, where ineffective spray deposition is a major concern with conventional pesticide application methods. Electrostatic spraying is known to be one of the most effective methods to improve leaf abaxial (underside) surface deposition, overall deposition, and distribution on the plant targets. Deposition of charged sprays on leaf abaxial and adaxial (upper) surfaces as influenced by the spray charging voltage (system), application speed (operational), target height and orientation (target) parameters was studied in the laboratory. An air-assisted electrostatic induction spray charging system attached to a moving carriage was used to apply charged spray at uniform application (ground) speeds. Spray deposition (101–71 μm NMD), determined using a fluorescent tracer technique increased with charging (0–5.5 mC kg 611) on leaf abaxial and decreased with charging on adaxial surface. The deposition was higher on abaxial (0.66–1.33 μg cm 612) at 30° below (horizontal plane) and on adaxial (0.78–1.79 μg cm 612) at 0° (horizontal) target orientation for lower (0.278 m s 611) application speed. At all target heights, abaxial deposition increased with charging voltage (0–4.0 kV) for medium application speed (0.417 m s 611) and adaxial deposition decreased with charging voltage for lower application speed (0.278 m s 611). The medium application speed with higher charging voltage was optimum for abaxial and adaxial deposition. The droplet velocity and charging voltage were the key factors for obtaining desired spray deposition on targets. All the selected factors including target orientation ( O), application speed ( S), target surface ( L), and charging voltage ( V), and their interactions except between O and S were significant at lower (0.35 m) and medium (0.65 m) target heights. All the factors and their interactions except between O and V were significant at higher (0.95 m) height. Electrostatically charged spray improved the underside (abaxial) and overall deposition. The deposition was substantially influenced by factors such as charging voltage, application speed, plant target height, and target orientation.
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1109/TDEI.2011.6032802URL [本文引用: 1]
Factors limiting charge-to-mass ratio achievable for induction-charged aerosol produced in supersonic atomizers are discussed. Experimental investigations performed using supersonic atomizers fitted with de Laval nozzle and concentric induction electrode have demonstrated moderately low electrification levels obtained in case of elevated flow rate of liquid being atomized. It was shown that low charging degree is associated with occurrence of shielding effect. A simplified model of conducting liquid charging process was worked out for the case of atomized liquid cone shielded by an "umbrella" of droplets. Manifestation of the shielding phenomenon and regularities arising from the assumed model has been confirmed experimentally.
,
DOI:10.1016/j.elstat.2012.11.019URL [本文引用: 1]
A new electrode material such as Nickel (200/201 forged bar) is used for spray charging. Comparative study has been made using different materials electrode viz. Nickel, Copper, Stainless Steel, Brass, and Aluminum; electrodes were ring shape with same inner diameter 15.002mm and outer diameter of 22.002mm of thickness 3.502mm. The experiments were conducted in air atmosphere at ambient conditions (T02=022002±02202°C, RH02=024602±023%), with an air feed rate of 24.602l/min, liquid feed rate 90.002ml/min and applied voltage ranging from 0 to02+3.002kV. The results of applied induction electrification process were characterized by a charge-to-mass factor as a function of electrode material.
,
URL [本文引用: 2]
荷电水雾可有效提高液滴捕集微细颗粒物的效率,其中液滴的荷电特性是影响荷电水雾除尘效率的重要因素。为此,从水雾感应荷电理论出发,建立了液滴群荷电量的理论计算式,通过改变荷电电压、电极间距、雾化压力以及电极环直径,实验研究了各种因素对液滴荷质比的影响规律,并测试了喷雾特性。实验研究结果表明:液滴荷质比随荷电电压的升高而先增大后减小,随电极环直径的增大而减小,随电极间距的增大而增大;液滴的荷电效果与雾化压力有关,且对于同一喷嘴存在荷电效果最佳的雾化压力值;液滴粒径随荷电电压的增大而逐渐减小,且当液滴粒径较小时,荷电电压对液滴粒径的影响相对较弱。该研究结果对于提高液滴的荷电效果、促进荷电水雾在控制微细颗粒物方面的应用具有重要的指导意义。
URL [本文引用: 2]
荷电水雾可有效提高液滴捕集微细颗粒物的效率,其中液滴的荷电特性是影响荷电水雾除尘效率的重要因素。为此,从水雾感应荷电理论出发,建立了液滴群荷电量的理论计算式,通过改变荷电电压、电极间距、雾化压力以及电极环直径,实验研究了各种因素对液滴荷质比的影响规律,并测试了喷雾特性。实验研究结果表明:液滴荷质比随荷电电压的升高而先增大后减小,随电极环直径的增大而减小,随电极间距的增大而增大;液滴的荷电效果与雾化压力有关,且对于同一喷嘴存在荷电效果最佳的雾化压力值;液滴粒径随荷电电压的增大而逐渐减小,且当液滴粒径较小时,荷电电压对液滴粒径的影响相对较弱。该研究结果对于提高液滴的荷电效果、促进荷电水雾在控制微细颗粒物方面的应用具有重要的指导意义。
,
DOI:10.3969/j.issn.1003-188X.2011.11.034URL
自制静电喷雾系统,采用自制环状电极通过感应充电方式对雾滴充电,调节充电电压得到试验要求的荷质比,对距离喷头550mm的模拟植株喷雾,研究对靶喷雾荷质比对雾滴沉积分布的影响。结果表明:静电喷雾较常规喷雾能够有效改善荷电雾滴的沉积分布效果;随着雾滴荷质比的增加,荷电雾滴向靶标集中,改善喷雾效果,且随着荷质比的增大,喷雾最大距离减小。
DOI:10.3969/j.issn.1003-188X.2011.11.034URL
自制静电喷雾系统,采用自制环状电极通过感应充电方式对雾滴充电,调节充电电压得到试验要求的荷质比,对距离喷头550mm的模拟植株喷雾,研究对靶喷雾荷质比对雾滴沉积分布的影响。结果表明:静电喷雾较常规喷雾能够有效改善荷电雾滴的沉积分布效果;随着雾滴荷质比的增加,荷电雾滴向靶标集中,改善喷雾效果,且随着荷质比的增大,喷雾最大距离减小。
,
DOI:10.13733/j.jcam.issn.2095-5553.2015.03.032URL
为了节省农药及减少对生态环境的污染,研究喷雾角度、荷电电压、叶片表面性质对静电喷雾施药靶标沉积效果的综合影响,以黄瓜、西红柿、菠菜的叶片作为靶标进行静电喷雾实验,结合实验结果对喷雾角度、荷电电压、叶片表面性质与靶标沉积效果的关系进行分析和讨论。结果表明:随着喷雾角度的增加,荷电雾滴在叶片上的沉积量先升后降,合适的喷雾角度会使3种靶标上的沉积量都增加,对3种叶片最佳喷雾角度都为60°;荷电电压、叶片表面性质对沉积效果影响显著;叶片表面结构是影响作物上药液沉积效果的重要因素。该研究有助于更加合理高效调控静电喷雾系统工况参量,提高雾滴对靶标的有效沉积。
DOI:10.13733/j.jcam.issn.2095-5553.2015.03.032URL
为了节省农药及减少对生态环境的污染,研究喷雾角度、荷电电压、叶片表面性质对静电喷雾施药靶标沉积效果的综合影响,以黄瓜、西红柿、菠菜的叶片作为靶标进行静电喷雾实验,结合实验结果对喷雾角度、荷电电压、叶片表面性质与靶标沉积效果的关系进行分析和讨论。结果表明:随着喷雾角度的增加,荷电雾滴在叶片上的沉积量先升后降,合适的喷雾角度会使3种靶标上的沉积量都增加,对3种叶片最佳喷雾角度都为60°;荷电电压、叶片表面性质对沉积效果影响显著;叶片表面结构是影响作物上药液沉积效果的重要因素。该研究有助于更加合理高效调控静电喷雾系统工况参量,提高雾滴对靶标的有效沉积。
,
DOI:10.1016/j.compag.2017.02.010URL
There is a pressing need of new chemical application sprayer for small scale forms in Indian agricultural pesticides spraying. A new air-assisted electrostatic nozzle has been designed and developed for small scale farms with a specific focus on Indian agricultural and rural developing economies. An air-assisted electrostatic nozzle is a combination of an air-assisted nozzle and induction based electrostatic charging system. Spray droplets are electrified to more than 10 mC/kg charge-to-mass by charging voltage less than 2.5 kV at liquid flow of 150 ml/min and electric power consumption less than 75 mW. Higher charge-to-mass ratio ensured the high range spraying distance to overcome the charge neutralization by recombination of naturally occurring ions present in the environment and charged liquid droplets. The results of applied induction electrification process were characterized by a charge-to-mass ratio and the results are in good agreement with the theoretical considerations. There has been 2-3 fold increase of liquid deposition with better uniformity on the obscured as well as front target. This nozzle is light weight, highly efficient, reduces pesticide use and human health risks, and eco-friendly.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/S0304-3886(02)00122-5URL [本文引用: 1]
An electrostatic pressure-swirl nozzle have been developed and tested. The result proves to be relevant due to the minimum pesticide input, increase deposition and reduction in drift. In this paper two systems have been described such as (1) the developed nozzle and its spray characteristics and (2) evaluation of the nozzle by using the weighing technique. Evaluation of sprays deposition on plant and ground loss has been a difficult task to overcome due to the plants morphology and geometrical shapes but the weighing technique has overcome some of the difficulties. The spray charge to mass ratio of 0.27 mC/kg at a liquid flow rate of 0.69 l/min and a volume median diameter of 116 μm with an applied voltage of 4.0 kV found suitable for the orchard sprayer. The evaluation shows an increase in deposition droplet by 1.3–2.3 fold and a decrease in the estimated drift.
,
DOI:10.3969/j.issn.1003-188X.2011.04.008URL [本文引用: 1]
静电喷雾技术是农业病虫害防治的一种新兴技术,在国内也引起人们越来越多的关注。静电喷雾技术的关键就是使喷出的雾滴带电,研究内容主要包括液体的雾化、雾滴的运动和沉降3部分。液体静电雾化技术是液体在风送式、液力式或离心式3种雾化方式的基础上,使雾滴带电后进一步雾化。雾滴的运动要影响到雾滴的扩散,不同的喷雾环境(如电场、风速、温度和湿度)都会影响其沉降状态和分布的均匀性。雾滴沉降分布的好坏会直接影响到静电喷雾技术的应用领域和前景。
DOI:10.3969/j.issn.1003-188X.2011.04.008URL [本文引用: 1]
静电喷雾技术是农业病虫害防治的一种新兴技术,在国内也引起人们越来越多的关注。静电喷雾技术的关键就是使喷出的雾滴带电,研究内容主要包括液体的雾化、雾滴的运动和沉降3部分。液体静电雾化技术是液体在风送式、液力式或离心式3种雾化方式的基础上,使雾滴带电后进一步雾化。雾滴的运动要影响到雾滴的扩散,不同的喷雾环境(如电场、风速、温度和湿度)都会影响其沉降状态和分布的均匀性。雾滴沉降分布的好坏会直接影响到静电喷雾技术的应用领域和前景。
,
DOI:10.1016/j.biosystemseng.2014.03.004URL [本文引用: 2]
Core findings of the study:61Air velocity is very important when charging spray generated by hydraulic nozzles.61High-air velocity may facilitate charge level of more than 1.802mC02kg611 for such spraying.61This level is substantially higher than those previously reported for conventional nozzles.61This charging substantially improved deposition on hard-to-reach surfaces in field tests.
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1002-1302.2013.09.135URL [本文引用: 1]
静电喷雾技术利用不同的充电方式使农药雾滴带电,并在喷头和目标间形成静电场,从而实现均匀、细化雾滴及提高雾滴在目标物的沉积量、均匀性、吸附性等效果。利用喷头综合性能试验台、激光粒度仪、雾滴感应电流测量系统等试验装置,基于新型静电喷头,分别研究0.6,0.8、1.0mm的喷嘴孔径和充电电压对静电喷头的雾化性能和荷电性能的影响。结果表明:喷嘴孔径对静电喷头的雾化性能和荷电性能有显著影响;喷嘴孔径越小,雾滴体积中径越小,雾滴荷质比越大;雾化角和沉积量分布与喷嘴孔径有直接关系。
DOI:10.3969/j.issn.1002-1302.2013.09.135URL [本文引用: 1]
静电喷雾技术利用不同的充电方式使农药雾滴带电,并在喷头和目标间形成静电场,从而实现均匀、细化雾滴及提高雾滴在目标物的沉积量、均匀性、吸附性等效果。利用喷头综合性能试验台、激光粒度仪、雾滴感应电流测量系统等试验装置,基于新型静电喷头,分别研究0.6,0.8、1.0mm的喷嘴孔径和充电电压对静电喷头的雾化性能和荷电性能的影响。结果表明:喷嘴孔径对静电喷头的雾化性能和荷电性能有显著影响;喷嘴孔径越小,雾滴体积中径越小,雾滴荷质比越大;雾化角和沉积量分布与喷嘴孔径有直接关系。
,
URL [本文引用: 3]
.
URL [本文引用: 3]
[本文引用: 1]
[本文引用: 1]
[本文引用: 3]
[本文引用: 3]
,
DOI:10.3969/j.issn.1674-8530.2012.04.018URL [本文引用: 1]
在毛细管-环状感应电极下,对多种介质在高压静电场中的静电雾化特性进行了试验研究.利用微量注射泵(ATI Orion M361)控制每次试验雾化溶液的流量,用高压发生器及电压读数仪(Q3-V型)准确控制所加的荷电电压,在不同电压下,研究了介质物性(电导率、黏度、表面张力)对液滴荷质比产生的影响,并深入分析了荷电电压、介质的物性参数对液滴荷质比的影响规律.结果表明:微流量情况下,在达到瑞利极限之前,不同液滴的荷质比在一定电压范围内随电压的升高而增大,并近似呈线性增长关系.介质的电导率是影响液滴荷质比的重要因素,电导率越大,荷质比随荷电电压增大得越快,但5%NaCl溶液与水的电导率相差近200倍,测得的荷质比却相差很小,说明当介质的电导率较小时,荷电电压对液滴荷质比起主导作用.介质的黏度对液滴的荷电能力有明显的抑制作用,而表面张力与液滴荷质比呈正比关系.
DOI:10.3969/j.issn.1674-8530.2012.04.018URL [本文引用: 1]
在毛细管-环状感应电极下,对多种介质在高压静电场中的静电雾化特性进行了试验研究.利用微量注射泵(ATI Orion M361)控制每次试验雾化溶液的流量,用高压发生器及电压读数仪(Q3-V型)准确控制所加的荷电电压,在不同电压下,研究了介质物性(电导率、黏度、表面张力)对液滴荷质比产生的影响,并深入分析了荷电电压、介质的物性参数对液滴荷质比的影响规律.结果表明:微流量情况下,在达到瑞利极限之前,不同液滴的荷质比在一定电压范围内随电压的升高而增大,并近似呈线性增长关系.介质的电导率是影响液滴荷质比的重要因素,电导率越大,荷质比随荷电电压增大得越快,但5%NaCl溶液与水的电导率相差近200倍,测得的荷质比却相差很小,说明当介质的电导率较小时,荷电电压对液滴荷质比起主导作用.介质的黏度对液滴的荷电能力有明显的抑制作用,而表面张力与液滴荷质比呈正比关系.
,
URL [本文引用: 1]
本文阐述了在喷雾过程中静电的作用以及药液物理特性对效果的影响的理论研究中所取得的进展,并介绍了所建立的静电喷雾实验室及其研制的试验装备和较完善的数据处理系统。将全年的静电喷雾试验数据存入磁盘;经计算机分析,找到了对液体雾化和充电性能有较大影响的主要因素和次要条件。在安全性测定方面,运用了空气采样技术进行探索。最后,对新研制的手持式静电微量喷雾器作了简介。
URL [本文引用: 1]
本文阐述了在喷雾过程中静电的作用以及药液物理特性对效果的影响的理论研究中所取得的进展,并介绍了所建立的静电喷雾实验室及其研制的试验装备和较完善的数据处理系统。将全年的静电喷雾试验数据存入磁盘;经计算机分析,找到了对液体雾化和充电性能有较大影响的主要因素和次要条件。在安全性测定方面,运用了空气采样技术进行探索。最后,对新研制的手持式静电微量喷雾器作了简介。
,
URL [本文引用: 1]
目前,手持式静电喷雾器大都是在手持式超低量喷雾器的基础上研制而成的,使用转盘式雾化器。本文针对这种静电喷雾器,通过试验观察和理论分析阐述了静电在雾化过程中的作用及充电电压和喷液物理特性对液体雾化的影响效果。结果表明,在试验的条件下,充电电压及流体的电导率、表面张力明显地影响着雾滴的体积中径。研究所得的结论为今后生产静电喷雾用的药液以及合理选择喷雾参数提供了理论依据。
.
URL [本文引用: 1]
目前,手持式静电喷雾器大都是在手持式超低量喷雾器的基础上研制而成的,使用转盘式雾化器。本文针对这种静电喷雾器,通过试验观察和理论分析阐述了静电在雾化过程中的作用及充电电压和喷液物理特性对液体雾化的影响效果。结果表明,在试验的条件下,充电电压及流体的电导率、表面张力明显地影响着雾滴的体积中径。研究所得的结论为今后生产静电喷雾用的药液以及合理选择喷雾参数提供了理论依据。
,
DOI:10.1016/j.elstat.2009.12.001URL [本文引用: 1]
Combinations of electrode voltage, liquid flow rate, and properties can enhance chargeability of electrostatic sprays for effective pesticide application, though the combined effects of these parameters are not well understood. Generally, 4 kV voltage and lower (30, 45, and 60 mL min) flow rate of tank water produced greater chargeability compared to ground water sprays. The rate of increase in spray chargeability with decreased liquid flow rate was higher in the lower flow rates. The outcome of the study will be helpful for the more targeted and environmentally safe application of pesticide sprays and development of suitable electrostatic spraying systems.
// ,
DOI:10.1109/CEIDP.2014.6995803URL [本文引用: 1]
The electrostatic induction charging has been studied for applications such as pesticide spraying equipment and paint equipment. However, the influences of some parameters, such as induction-electrode configuration, water pressure, and applied voltage towards the electrostatic induction charging of water mist, are still not well known. In this work, the induction-electrode location effect on the water mist was focused. In the experiments, a mechanism in which a spray nozzle system was used to produce water mist was considered. To collect the charged water mist, so that the charge-to-mass could be determined, a stainless steel plate was placed under the nozzle. To inspect the optimum condition of electrostatic induction charge of the water mist with different conductivities, the nozzle-to-electrode distance, voltage and water mist diameter were varied. The charge-to-mass of water mist was calculated from the current at the collecting plate electrode. From the results, the movement of charge in the flow of water mist is discussed.
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1008-8873.2009.05.017URLMagsci [本文引用: 1]
<p>通过对2006年7月~2008年5月在流溪河地区采集的106次降雨水样(雨量范围0.7~268.6 mm)进行化学测试,研究了降水中几类主要离子含量与电导率的关系。结果显示:(1)通过各化学离子含量计算的电导率与对应实测的电导率之间存在-2.94%的平均相对误差。(2)H<sup>+</sup>离子浓度与电导率之间的相关关系,在水样中pH<5.6时是正相关,在水样中pH≥5.6时呈现负相关规律。(3)电导率随离子总浓度的增加而增加,但当水样的总离子浓度相同或者H<sup>+</sup>和总离子浓度相同时,由于样品之间存在显著的其他化学组成差异,致使电导率的不一样。(4)将水样分成pH≥5.6和pH<5.6的两组后,每组中各离子浓度与电导率之间存在更好的回归关系,因此可以通过pH值、电导率的测定并利用回归方程来预测水中的其他化学成分含量。</p>
DOI:10.3969/j.issn.1008-8873.2009.05.017URLMagsci [本文引用: 1]
<p>通过对2006年7月~2008年5月在流溪河地区采集的106次降雨水样(雨量范围0.7~268.6 mm)进行化学测试,研究了降水中几类主要离子含量与电导率的关系。结果显示:(1)通过各化学离子含量计算的电导率与对应实测的电导率之间存在-2.94%的平均相对误差。(2)H<sup>+</sup>离子浓度与电导率之间的相关关系,在水样中pH<5.6时是正相关,在水样中pH≥5.6时呈现负相关规律。(3)电导率随离子总浓度的增加而增加,但当水样的总离子浓度相同或者H<sup>+</sup>和总离子浓度相同时,由于样品之间存在显著的其他化学组成差异,致使电导率的不一样。(4)将水样分成pH≥5.6和pH<5.6的两组后,每组中各离子浓度与电导率之间存在更好的回归关系,因此可以通过pH值、电导率的测定并利用回归方程来预测水中的其他化学成分含量。</p>
,
URL [本文引用: 1]
本文通过向传统离子液体中添加助溶剂DMSO来增强离子液体对纤维素的溶解效果.系统研究了DMSO添加量对纤维素溶解性能的影响,结果表明50℃下随着DMSO添加量的增大,纤维素的溶解程度增加,当DMSO添加量为50%时溶解效果最佳.采用电导率测试研究了DMSO与离子液体的作用机理,并通过FT-IR、XRD、TGA、SEM以及力学性能测试等方法对添加不同量DMSO溶剂溶解再生后的纤维素膜进行了分析,结果表明添加DMSO后溶剂仍为纤维素的直接溶剂,溶解再生后纤维素晶型由Ⅰ转变为Ⅱ型,并且随着DMSO添加量的增加,溶剂对纤维素分子链及结晶区的破坏能力增大,从而导致再生纤维素结晶度、抗拉强度及聚合度相对纯离子液体再生的有所降低.
URL [本文引用: 1]
本文通过向传统离子液体中添加助溶剂DMSO来增强离子液体对纤维素的溶解效果.系统研究了DMSO添加量对纤维素溶解性能的影响,结果表明50℃下随着DMSO添加量的增大,纤维素的溶解程度增加,当DMSO添加量为50%时溶解效果最佳.采用电导率测试研究了DMSO与离子液体的作用机理,并通过FT-IR、XRD、TGA、SEM以及力学性能测试等方法对添加不同量DMSO溶剂溶解再生后的纤维素膜进行了分析,结果表明添加DMSO后溶剂仍为纤维素的直接溶剂,溶解再生后纤维素晶型由Ⅰ转变为Ⅱ型,并且随着DMSO添加量的增加,溶剂对纤维素分子链及结晶区的破坏能力增大,从而导致再生纤维素结晶度、抗拉强度及聚合度相对纯离子液体再生的有所降低.
,
[本文引用: 1]
,
DOI:10.1039/c4ra15139aURL [本文引用: 1]
Avermectins are widely used to control weeds, insects, and plant diseases. We have prepared a controllable avermectin release system based on a hydrazone bond inducing hydrogel, which presents good release properties of avermectin triggered by temperature and pH stimuli. This strategy embarks on controllable pesticide release using an environmentally friendly hydrogel.
[本文引用: 1]
[本文引用: 1]