删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

北京化工大学信息科学与技术学院导师教师师资介绍简介-王晶

本站小编 Free考研考试/2020-05-11


照片+个人介绍 Introduction
王晶,教授,博导。分别于1994、1998年东北大学获工学学士和工学博士学位。北京自动化学会副理事长,中国自动化学会数据驱动控制学习与优化专委会副秘书长、中国自动化学会技术过程故障诊断与安全性专委会委员,中国自动化学会大数据专业委员会委员,中国系统仿真学会智能物联系统建模与仿真专委会委员,国内外若干科技项目评审专家,国内外多个期刊编委、审稿人。主要研究方向有复杂工业过程建模、优化、控制及故障诊断;人工智能、机器学习、多元统计及其工业应用;生物基因制药过程分析、设计、优化与控制等。在控制、化工、信息、电子等国内外重要期刊及会议发表论文百余篇。

教学课程Teaching Courses
课程名称
面向对象

现代控制理论(Modern Control Theory)
本科生

控制系统Matlab仿真(Control System & Matlab Simulation)
本科生

线性系统理论(Linear System Theory)
研究生


主要科研项目 Research Projects
项目名称
项目来源

大数据下复杂流程工业的分布式过程监测与故障诊断
国家自然科学基金面上项目

统一框架下的间歇过程故障诊断与控制研究
国家自然科学基金面上项目

数据与模型融合驱动的间歇聚合过程学习控制
国家自然科学基金面上项目

快捷响应制造过程微观质量的建模、优化与控制
国家自然科学基金青年项目

基于分布一致性的多无人机系统自主协同控制
北京市自然科学基金面上项目

基于时段分割的间歇过程状态评估
北京市自然科学基金面上项目

基于IPv6的多无人机容错协同控制
教育部赛尔网络下一代互联网技术创新项目

工业数据补偿与故障演化深度分析
霍尼韦尔综合科技(中国)有限公司

带转馏分操作的间歇蒸馏过程优化控制方法
中国人民解放军军事科学院防化研究院

复杂工业过程微小故障的闭环主动诊断
流程工业综合自动化国家重点实验室开放基金

不平衡数据下的工业过程故障检测与诊断
山东省大数据驱动的复杂系统安全控制技术重点实验室(筹)开放基金


主要成果、奖励Main Achievements&Awards
2013年度中国石油和化工自动化行业科学技术奖:科技进步一等奖,炼化装置全流程自动控制关键技术及应用
2012年度北京市科学技术奖:科技进步类三等奖,炼化装置过程监控与控制器优化的关键技术及应用

学术论文 Research Publications
Wang Jing; Zhang Wenqian; Zhou Jinglin; Fault Detection with Data Imbalance Conditions Based on the Improved Bilayer Convolutional Neural Network, Industrial & Engineering Chemistry Research, 2020, doi: 10.1021/acs.iecr.9b06298
Zhihui Zhao, Jing Wang*, Yangquan Chen, Shuang Ju, Iterative learning based formation control for multiple quadrotor UAVs, International Journal of Advanced Robotic Systems, 2020, DOI: 10.1177/**11520
Jianqi Wang, Yu Du, Jing Wang*, LSTM Based Long-Term Energy Consumption Prediction with Periodicity, Energy, 2020, DOI: 10.1016/j.energy.2020.117197
Jinglin Zhou, Shunli Zhang, Jing Wang, A Dual Robustness Projection to Latent Structure Method and Its Application, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020. **
Chengyuan Tan, Sen Wang and Jing Wang*, Robust Iterative Learning Control for Iteration- and time-varying Disturbance Rejection, International Journal of Systems Science, 2020, DOI: 10.1080/**.2020.**
Jing Wang, Chenchen Yu, Yi Liu, Dong Shen, Yangquan Chen, Variable Gain Feedback PDα-type Iterative Learning Control for Fractional Nonlinear Systems with Time-delay, IEEE ACCESS,DOI : 10.1109/ACCESS.2019.**, 2019
Jing Wang, Changfeng Shao, Xiaolu Chen, Yang-Quan Chen, Fractional order DOB-sliding mode control for a class of noncommensurate fractional order systems with mismatched disturbances, Mathematical Methods in the Applied Sciences, 2019, DOI:10.1002/ mma.5850
Jing Wang, Junde Wang, and Meng Zhou*, On-line Auxiliary Input Signal Design for Active Fault Detection and Isolation Based on Set-membership and Moving Window Technique, International Journal of Control, Automation and Systems, 2019, doi: 10.1007/s12555-019-0182-6
Jing Wang, Chengyuan Tan, Haiyan Wu, Online shape modification of molecular weight distribution based on the principle of active disturbance rejection controller, IEEE ACCESS, vol. 7: 53163-53171, 2019, DOI 10.1109/ACCESS.2019.**
Ruixue Jia, Jing Wang*, Jinglin Zhou*, Fault diagnosis of industrial process based on the optimal parametric t-distributed stochastic neighbor embedding, SCIENCE CHINA Information Sciences, 2019, doi: 10.1007/s11432-018-9807-7.
Jinglin Zhou, Yuwei Ren, and Jing Wang*, Quality-Relevant Fault Monitoring Based on Locally Linear Embedding Orthogonal Projection to Latent Structure, Industrial & Engineering Chemistry Research, 2019,58(3),pp 1262–1272, DOI: 10.1021/acs.iecr.8b03849
Jing Wang, Qilun Wang, Intelligent explicit model predictive control based on machine learning for microbial desalination cells,ProcIMechE Part I: J Systems and Control Engineering, 1–13 2018, Doi:10.1177/6845
Xiaolu Chen, Jing Wang*, Jinglin Zhou, Probability density estimation and Bayesian causal analysis based fault detection and root identification, Industrial & Engineering Chemistry Research, 2018, 57(43): 14656-14664
Jing Wang*, Changfeng Shao, Yang-Quan Chen, Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance, Mechatronics, 2018, 53: 8-19
Jing Wang*, Qilun Wang, Jinglin Zhou, Xiaohui Wang, Long Cheng, Operation space design of microbial fuel cells combined anaerobic-anoxic-oxic process based on support vector regression inverse model, Engineering Applications of Artificial intelligence, 2018,72, 340-349
Xiaolu Chen, Jing Wang*, Jinglin Zhou, Process Monitoring Based on Multivariate Causality Analysis and Probability Inference, IEEE ACCESS, 2018, 6: 6360-6369
Ruixuan Wang, Jing Wang*, Jinglin Zhou, Haiyan Wu, Fault diagnosis based on the integration of exponential discriminant analysis and Local Linear Embedding, The Canadian Journal of Chemical Engineering, 2018, 96: 463–483. DOI:10.1002/cjce.22921
Jing Wang, Bin Zhong, Jinglin Zhou*, Quality-Relevant Fault Monitoring Based on Locality Preserving Partial Least Squares Statistical Models,Industrial & Engineering Chemistry Research,2017, 56:7009–7020. DOI: 10.1021/acs.iecr.7b00248
Jing Wang*, Jingjing Zhang, Bo Qu, Haiyan Wu, Jinglin Zhou, Unified Architecture of Active Fault Detection and Partial Active Fault Tolerant Control for Incipient Faults, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(4), 1688-1700. DOI: 10.1109/TSMC. 2017.**
Jing Wang*, Daiwei Yang, Wei Jiang, Jinglin Zhou, Semi-supervised incremental support vector machine learning based on neighborhood kernel estimation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017,47(10): 2677-2687, DOI: 10.1109/TSMC.2017. **
Jing Wang*, Wenshuang Ge, Jinglin Zhou, Haiyan Wu, Qibing Jin, Fault isolation based on residual evaluation and contribution analysis and contribution analysis, Journal of the Franklin Institute,2017, 354, 2591-2612



相关话题/北京化工大学 信息科学