删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

北京航空航天大学空间与环境学院导师教师师资介绍简介-Keizo Fujimoto

本站小编 Free考研考试/2020-04-24

Keizo Fujimoto (藤本桂三)
职称\职位:特别研究员\博导
电子邮箱:fujimoto@buaa.edu.cn
研究领域:空间物理,计算物理
Research field: Space Physics, Computational Physics
Main Interest
Physical mechanism of magnetic reconnection itself.
How is a fast reconnection with the reconnection rate of the order of 0.1 achieved?
How and where can plasma be accelerated and heated?
What can trigger magnetic reconnection?
Its impactson substorms in the Earth magnetosphere and the solar flares.
Development of new kinetic simulation code.
教育经历
2001年毕业于气象大学校,获学士学位
2003年在京都大学获硕士学位
2006年在京都大学获博士学位
Education :
2001, BSc, Meteorological College
2003, MS, Kyoto University
2006,PhD, Kyoto University
工作经历
2006 – 2009: JSPS Fellow(Univ. Alberta, Canada / NiCT 情報通信研究機構/ Univ. Nagoya 名古屋大学)
2009 – 2012:Special PostdoctoralResearch Fellow (RIKEN 日本理化学研究所)
2012 – 2016: Research Assistant Professor (National Astronomical Observatory of Japan 日本国家天文台)
2016 – 2017: Project Researcher (Univ. Tokyo东京大学)
2017 -present : “Zhuoyue” Associate Professor 卓越入选者(北京航空航天大学)
获奖情况:
1. 2009年,日本理化研究所(RIKEN),Special Postdoctoral Research Fellowship
2. 2006年,日本学术振兴会(JSPS),JSPS Research Fellowship (PD)
3. 2003年,日本学术振兴会(JSPS),JSPS Research Fellowship (DC1)
研究成果
1. Developed the first electromagnetic AMR-PIC simulation code in the world
研制出国际上第一个自适应网格PIC粒子模拟程序
2. Discovered the magnetic dissipation mechanism and established the electron motion model in the reconnection current layer
发现磁场重联磁场耗散机制,建立电子扩散区电子运动模型
3. Discovered the mechanisms for whistler and solitary wave generation, and electron acceleration in collisionless magnetic reconnection.
发现重联区哨声波和孤波产生机制,以及相关电子加速
Publications论文列表

1. Fujimoto, K., Bursty emission of whistler waves in association with plasmoid collision, Ann. Geophys., 35, 885-892, doi:10.5194/angeo-35-885-2017, 2017.
2. Huang, S. Y., Z. G. Yuan, F. Sahraoui, H. S. Fu, Y. Pang, M. Zhou, K. Fujimoto, X. H. Deng, A. Retino, D. D. Wang, X. D. Yu, and H. M. Li, Occurrence rate of whistler waves in the magnetotail reconnection region, J. Geophys. Res., 122, 7188-7196, doi:10.1002/2016JA023670, 2017.
3. Fujimoto, K. and R. D. Sydora, Linear theory of the current sheet shear instability, J. Geophys. Res., 122, 5418-5430, doi:10.1002/2017JA024079, 2017.
4. Fujimoto, K., Three dimensional outflow jets generated in collisionless magnetic reconnection, Geophys. Res. Lett., 43, 10,557-10,564, doi:10.1002/2016GL070810, 2016. Supplemental materials: Video1 (3.1M), Video2 (2.8M)
5. Huang, S. Y., H. S. Fu, Z. G. Yuan, A. Vaivads, Y. V. Khotyaintsev, A. Retino, M. Zhou, D. B. Graham, K. Fujimoto, F. Sahraoui, X. H. Deng, B. Ni, Y. Pang, S. Fu, D. D. Wang, and X. Zhou, Two types of whistler waves in the reconnection ion diffusion region, J. Geophys. Res., 121, 6639-6646, doi:10.1002/2016JA022650, 2016.
6. Fujimoto, K., Characteristics of a current sheet shear mode in collisionless magnetic reconnection, J. Phys. Conf. Ser., 719, 012017, doi:10.1088/1742-6596/719/1/012017, 2016.
7. Fujimoto, K. and M. Takamoto, Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line, Phys. Plasmas, 23, 012903, doi:10.1063/1.**, 2016.
8. Chen, Y., K. Fujimoto, C. Xiao, and H. Ji, Plasma waves around separatrix in collisionless magnetic reconnection with weak guide field, J. Geophys. Res., 120, 6309-6319, doi:10.1002/2015JA021267, 2015.
9. Fujimoto, K., Wave activities in separatrix regions of magnetic reconnection, Geophys. Res. Lett., 41, 2721-2728, doi:10.1002/2014GL059893, 2014.
10. Fujimoto, K., Dissipation mechanism in 3D collisionless magnetic reconnection, J. Phys. Conf. Ser., 511, 012012, doi:10.1088/1742-6596/511/1/012012, 2014.
11. Fujimoto, K. and R. Sydora, Plasmoid-induced turbulence in collisionless magnetic reconnection, Phys. Rev. Lett., 109, 265004, doi:10.1103/PhysRevLett.109.265004, 2012. Supplemental materials: Video1 (2.1M), Video2 (2.4M) One of the figures was selected for the journal cover.
12. Fujimoto, K., Dissipation mechanism in 3D magnetic reconnection, Phys. Plasmas, 18, 111206, doi:10.1063/1.**, 2011. One of the figures was selected for the journal cover.
13. Fujimoto, K., A new electromagnetic particle-in-cell model with adaptive mesh refinement for high-performance parallel computation, J. Comput. Phys., 230, 8508-8526, doi:10.1016/j.jcp.2011.08.002, 2011.
14. Fujimoto, K. and R. Sydora, Particle description of the electron diffusion region in collisionless magnetic reconnection, Phys. Plasmas, 16, 112309, doi:10.1063/1.**, 2009.
15. Fujimoto, K., Fast magnetic reconnection in a kinked current sheet, Phys. Plasmas, 16, 042103, doi:10.1063/1.**, 2009.
16. Fujimoto, K. and R. Sydora, Fast magnetic reconnection associated with kink modes, J. Plasma Fusion Res. Ser., 8, 212-216, 2009.
17. Fujimoto, K. and R. Sydora, Whistler waves associated with magnetic reconnection, Geophys. Res. Lett., 35, L19112, doi:10.1029/2008GL035201, 2008.
18. Fujimoto, K. and R. Sydora, Electromagnetic particle-in-cell simulations on magnetic reconnection with adaptive mesh refinement, Comput. Phys. Commun., 178, 915-923, doi:10.1016/j.cpc.2008.02.010, 2008.
19. Fujimoto, K. and S. Machida, A generation mechanism of electrostatic waves and subsequent electron heating in the plasma sheet-lobe boundary region during magnetic reconnection, J. Geophys. Res., 111, A09216, doi:10.1029/2005JA011542, 2006.
20. Fujimoto, K., Time evolution of the electron diffusion region and the reconnection rate in fully kinetic and large system, Phys. Plasmas, 13, 072904, doi:10.1063/1.**, 2006.
21. Fujimoto, K. and S. Machida, Electromagnetic full particle code with adaptive mesh refinement technique: Application to the current sheet evolution, J. Comput. Phys., 214, 550-566, doi:10.1016/j.jcp.2005.10.003, 2006.
22. Fujimoto, K. and S. Machida, Full particle simulation of the plasma sheet using adaptive mesh refinement (AMR) technique, Adv. Space Res., 37, 1348-1353, doi:10.1016/j.asr.2005.03.096, 2006.
23. Fujimoto, K. and S. Machida, An electron heating mechanism in the outflow region from the X-type neutral line, J. Geophys. Res., 108, 1349, doi:10.1029/2002JA009810, 2003.
24. Fujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, and M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res., 108, 1417, doi:10.1029/2002JA009763, 2003.
25. Fujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, K. Hosokawa, and M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse, J. Geophys. Res., 108, 1416, doi:10.1029/2002JA009407, 2003.

2010年以来国际会议邀请报告

1. EASW-7, Weihai, China, July, 2017
2. ASTRONUM 2017, St. Malo, France, June, 2017.
3. International Summer School on Magnetic Reconnection in Space and Laboratory Plasmas, Kunming, China, July, 2016.
4. ICPP2016, Kaohsiung, Taiwan, June, 2016.
5. ASTRONUM 2016, Monterey, USA, June, 2016.
6. MR2016, Napa, USA, March, 2016.
7. ASTRONUM 2015, Avignon, France, June, 2015.
8. ASTRONUM 2014, Long Beach, USA, June, 2014.
9. MR2014, Tokyo, Japan, May, 2014.
10. ISSS-11, Zhongli, Taiwan, July, 2013.
11. COSPAR2012, D2.2-0024-12, Mysore, India, July, 2012.
12. ISSS-10, Canada, July, 2011.
13. MR2011, Nara, Japan, December, 2010.
14. International Symposium on Space Plasma Physics, Hangzhou, China, April, 2010.
相关话题/环境学院 空间