删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于GF-2的乔木生物量估测模型研究

本站小编 Free考研考试/2021-12-25

閻熸洑鐒︽竟姗€鎳撻崘顏嗗煛闁兼澘鍟畷銉︾▔閹捐尙鐟归悹鍥у⒔濠€鈩冿紣濡硶鍋撴笟鈧。鑺ユ償閹炬墎鍋撴担绛嬫綊濡増鍩婄槐鍨交濞嗘挸娅¢悹褍瀚花顔炬惥閸涱厼寮块柨娑楃濠€顏嗙棯閸喖甯抽悹鎰秺濡插嫮鎷犳导娆戠<
2濞戞挸娲ㄩ~鎺楁嚀閸愵亞鍩¢柤鏉垮暙瀹曘儵鎮介棃娑氭憤濞戞棑璁g槐娆愶紣濡櫣姘ㄩ柕鍡曟祰椤锛愰幋娆屽亾娴gǹ寮垮┑鍌涱殙缁侇偊寮▎娆戠闁告瑥锕ゅ濠氱嵁鐎靛憡鍩傚Λ鐗堬公缁辨繂鈽夐悽鍨0547闁圭鍋撻梻鍕╁灪閻楋拷4濞戞挸娲g紞鎴炵▔椤忓洠鍋撻崘顏嗗煛闁兼澘鍟畷銉︾▔閹捐尙鐟圭紒澶嬪灩濞蹭即濡存担瑙e亾閸愵亞鍩¢柛蹇e墮閸欙紕鎷犻幘鍛闁衡偓閹稿簼绗夐柤鏄忕簿椤曘垽寮弶娆惧妳闁挎稑顦埀顒婃嫹40缂佸绉崇粭鎾寸▔濮橀硸鏁嬪璇″亾缁辨瑩鏌岄幋锝団偓铏规兜閺囩儑绱滈柕鍡曞簻BA闁靛棔绀佸ù妤呮⒔閸涱厽娅岄柛鏃撶磿椤㈡碍绔熼鐘亾娴h鐓€闂傚倽顔婄槐鍫曞箻椤撶媭鏁嬪璇″亖閳ь兛鑳堕妵鐐村濮橆兛绱eù锝嗙矌椤㈡碍绔熼銈囨惣闁挎稑顦埀顒婃嫹28缂侇偉顕ч幃鎾剁驳婢跺⿴鍔呴柛鏃€绋撻弫鐢垫兜閺囨氨鐟╁☉鎾村搸閳ь剨鎷�1130缂佸绉剁划锟犲礂閸涘﹥娈岄柡澶嬪姂閳ь剙鍊瑰Λ銈囨媼閻戞ê浜堕柡鍕靛灣濠€鈩冿紣濡崵宸濈紓浣稿暔閳ь兛绶氶。鑺ユ償閹惧啿鐓曞Λ鐗堬公缁辨繃娼诲Ο缁樞﹀璺虹С缁″嫰寮▎鎰稄闁挎稑濂旂粩瀛樼▔閻氬様P濞村吋鑹鹃幉鎶藉锤閸パ冭婵犲◥銈呭枙闁诡喓鍔庡▓鎴︽閳ь剙效閸屾ǚ鍋撻敓锟�
doi:10.12202/j.0476-0301.2020440丁志丹,
孙玉军,,
孙钊
北京林业大学森林资源和环境管理国家林业和草原局重点开放性实验室,北京,100083
基金项目:林业科学技术推广资助项目([2019]06)

详细信息
通讯作者:孙玉军(1963-),男,博士,教授. 研究方向:森林资源调查与监测,森林结构与生长模型模拟,林业遥感与信息技术. E-mail: sunyj@ bjfu.edu.cn
中图分类号:S757.2

计量

文章访问数:76
HTML全文浏览量:25
PDF下载量:5
被引次数:0
出版历程

收稿日期:2020-09-11
网络出版日期:2021-03-09
刊出日期:2021-02-01

Estimation of tree biomass with GF-2

Zhidan DING,
Yujun SUN,,
Zhao SUN
State Forestry & Grassland Administration Key Laboratory of Forest Resources & Environmental Management, Beijing Forestry University, 100083,Beijing , China



摘要
HTML全文
(4)(3)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:以福建省将乐林场为研究区,使用野外实测样地数据,结合福建省二类调查数据,获取了共192个样地的生物量数据,其中杉木纯林112个,马尾松纯林80个.对覆盖研究区的2景GF-2影像进行预处理,提取光谱信息、植被指数、纹理特征及地形因子,筛选与样地生物量相关性较高的因子作为建模的自变量,采用支持向量机、随机森林及多元逐步回归3种方法分别建立了杉木和马尾松生物量模型.结果表明:支持向量机、随机森林模型拟合效果均比多元逐步回归模型好,其中随机森林模型决定系数R2最高,2种样地的R2分别为0.65和0.72,估计精度也最高,分别为65.28%和76.82%;杉木样地3种模型的均方根误差分别为64.27、48.16和77.03,马尾松样地3种模型的均方根误差分别为54.79、48.18和65.63,其中随机森林模型的最低.在3种模型中,随机森林模型为乔木生物量的最优模型.
关键词:乔木生物量/
GF-2/
支持向量机/
随机森林/
多元逐步回归
Abstract:Biomass data from a total of 192 plots (112 pure forests of Chinese fir, 80 pure forests of Pinus massoniana) in Jiangle State Forest Farm in Sanming City, Fujian Province were obtained from field measured sample plot data and second-class survey data of Fujian Province.Two scene GF-2 images from the study area were preprocessed, spectral information, vegetation index, texture features and topographic factors were extracted, factors highly-correlated with the biomass as independent variables were screened out.Biomass models of fir and Pinus massoniana were established from support vector machine, random forest and multiple stepwise regressions.Fitting of the two machine learning models was found to be better than the multiple stepwise regression model.The random forest model showed the highest determination coefficient R2 (0.65 and 0.72 for the 2 plots), and the highest estimation accuracy (65.28% and 76.82%).The mean root square errors in the 3 models for the Chinese fir plot were 64.27, 48.16 and 77.03.The mean root square errors in the three models for the Pinus massoniana plot were 54.79,48.16 and 65.63, with the random forest model showing the lowest value.It is concluded that the random forest model is the most optimal among all three models.
Key words:tree biomass/
GF-2/
support vector machine/
random forest/
multiple stepwise regression

闁瑰吋绮庨崒锟�2濞戞挸娲ㄩ~鎺楁嚀閸愵亞鍩¢柤鏉垮暢閻﹀鎮介棃娑氭憤濞戞棑璁g槐娆愶紣濡櫣姘ㄩ柨娑樼焷椤锛愰幋顖滅闁稿繐绉烽崹鍌炴偨閿燂拷
濠㈠爢鍥у姤闁告帒妫涢銏ゆ鐎n喖鍘撮柡鍕靛灣椤戝洦绋夐埀顒€鈻庨檱閳ь剙鍟伴悥娲晬鐏炵瓔鍤犲ù婊冮椤┭勬媴閺囩喓鍙€闁归潧褰炵粭鎾寸▔濮樻剚鍤﹂柟绋挎搐閻i箖寮▎鎰稄闁挎稑鏈崹銊ф媼閸涘﹥绠掔€垫澘鐗嗛ˇ鍧楁偪閹达附锛栭柕鍡曞ree濠㈠綊鈧稒銆冮柛鎺戞椤掔喐绋婇悩鐢电Ч闁兼澘鍟伴悥鍝勄庢潏顐熷亾閺囨氨鐟╁☉鎾翠亢椤曡櫕娼忛崨顓у殼20妤犵偠鎻槐婵嬪箑閼姐倗娉㈠ù婊冩缁夊鈧湱鍋熼弫銈夋儍閸曨剙鐦归悗瑙勭閺嗏偓闁哄鍔栭悡锛勬嫚閵忊剝鐓欐繛澶嬫礀瀵攱寰勫鍕槑闁哄倽顫夌涵鍫曟晬鐏炵偓绠掗梻鍥e亾閻熸洑鑳跺▓鎴︽儑鐎n厾绠栭柡澶涙嫹
相关话题/林业 数据 北京林业大学 实验室 结构