删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于CCI数据的中国北方地区土壤水分时空变化特征分析

本站小编 Free考研考试/2021-12-25

doi:10.12202/j.0476-0301.2020056姜淇,
姚晓磊,
李卢祎,
蒋卫威,
鱼京善,
北京师范大学水科学研究院,数字流域实验室,100875,北京
基金项目:国家重点研发计划重点专项基金资助项目(2016YFC0401308);国家自然科学基金资助项目(51779007,41671018)

详细信息
通讯作者:鱼京善(1965—),男,教授,博士. 研究方向:环境信息系统、水文水资源、水环境. e-mail: jingshan@bnu.edu.cn
中图分类号:S152.71

计量

文章访问数:127
HTML全文浏览量:30
PDF下载量:7
被引次数:0
出版历程

收稿日期:2019-11-07
网络出版日期:2020-07-29
刊出日期:2020-04-01

Temporal and spatial variations in soil moisture in Northern China as demonstrated by CCI data

Qi JIANG,
Xiaolei YAO,
Luyi LI,
Weiwei JIANG,
Jingshan YU,
Digital Watershed Laboratory, College of Water Sciences, Beijing Normal University, 100875, Beijing, China



摘要
HTML全文
(9)(1)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:针对我国实测土壤水分站点稀疏、分布不均、数据连续性较差且在大尺度鲜有研究的问题,将欧洲空间局气候变化项目(European Space Agency climate change initiative, ESA CCI)的土壤湿度数据集应用于中国北方5大农业生态区,开展土壤水分时空变化分析. 采用皮尔逊相关系数进行遥感数据的有效性验证,利用时空持久性概念分析土壤水分的时空变化规律. 结果表明:ESA CCI遥感土壤水分数据在东北区夏季、西北区春季、黄土高原区春夏秋季、内蒙古高原区夏秋季具有很好的时空适应性;北方地区1991—2016年间土壤体积含水量年均值为0.06~0.39 m3·m?3,空间分布呈现出由西向东土壤水分逐渐升高的趋势,并表现出夏季最高、秋季其次、冬春季较低的季节特征;东北区、黄土高原区、黄淮海区中我国的重要粮食产区的土壤水分呈现出随时间季节变化波动大,且有较为明显的变干趋势.
关键词:ESA CCI/
遥感土壤水分/
时空适应性分析/
时空变化/
中国北方地区
Abstract:Due to sparse, uneven data distribution, poor data continuity, poor large scale-research, soil moisture data of European Space Agency Climate Change Initiative (ESA CCI) was applied to five agro-ecological zones in Northern China. Pearson correlation coefficient was used to validate remote sensing data, spatio-temporal persistence was used to analyze spatial-temporal variations in soil moisture. ESA CCI remote-sensing soil-moisture data set was found to have good spatial and temporal adaptability to Northeast China in summer, in Northwest China in spring, in Loess Plateau in spring and summer, and in Inner Mongolia Plateau in summer and autumn. The annual average soil moisture in Northern China from 1991-2016 was found to be 0.06-0.39 m3?m?3. Gradual increase in soil water content was found from west to east, with the highest values in summer. Lower seasonal values were found in autumn, winter and spring. Important grain production areas in the Northeast, Loess Plateau and Huang-Huai-Hai region demonstrated great fluctuations with time and season, a tendency to dry out was also revealed.
Key words:ESA CCI/
remote sensing soil water/
spatio-temporal adaptability analysis/
time and space evolution/
Northern China

相关话题/土壤 遥感 数据 空间 北京师范大学