删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

融合静态属性和动态轨迹的盗窃前科人员分类研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
融合静态属性和动态轨迹的盗窃前科人员分类研究
Larceny Ex-Convict Classification by Combining Static Attribute and Dynamic Trajectory
投稿时间:2018-01-17
DOI:10.15918/j.tbit1001-0645.2018.051
中文关键词:盗窃犯罪前科人员静态属性动态轨迹
English Keywords:larcenyex-convictstatic attributedynamic trajectory
基金项目:国家自然科学基金资助项目(71704183)
作者单位
胡啸峰中国人民公安大学 信息技术与网络安全学院, 北京 100076
石拓北京警察学院, 北京 102202
瞿珂北京市公安局 门头沟分局, 北京 102300
摘要点击次数:887
全文下载次数:307
中文摘要:
以往犯罪前科人员分类研究,通常基于历史犯罪信息中的静态属性信息,而忽略了对动态轨迹信息的利用,且缺乏专门针对盗窃前科人员再犯罪风险预测的研究.基于上述以往研究的不足,本文研究融合静态属性和动态轨迹的盗窃前科人员初犯/累犯分类.构建了融合静态属性和动态轨迹的长时间跨度盗窃前科人员分类数据集,然后探索和对比多种不同类型机器学习模型在该数据集上对盗窃前科人员的分类性能,提炼出与盗窃前科人员分类最相关的特征;基于上述分析结果,提出基于加权关联规则的盗窃犯罪人员预警模型.本文的相关研究成果可以应用于盗窃犯罪的预警工作中,对犯罪打击和安全防范工作具有一定的现实意义.
English Summary:
It's one of the social issues, that the different authorities in the world pay considerable attention to the ex-convicts for recommitting crimes. Previous studies of ex-convict classification are usually focused on static attributes of historical criminal data rather than dynamic trajectory. And fewer are focused on risk predicting analysis of crime-recommitting of larceny ex-convicts. For this reason, a larceny ex-convict (first offenders and recidivisms) classification was studied by combining static attributes and dynamic trajectory in this paper. Firstly, a long-timespan data base about the larceny ex-convict classification was developed based on static attributes and dynamic trajectory. Then the performances of different types of machine learning models on larceny ex-convict classification were explored and compared to define the most relevant features to it. Finally, an early warning model of larceny crimes was established based on weighted association rules. The research achievement can be applied to early warning of larceny crimes, and will show practical significance for crime crackdown and security precaution.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 信息 警察 中文 中国人民公安大学