删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

软聚类节点分裂层次模型

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
软聚类节点分裂层次模型
Soft Clustering Node Split Hierarchical Model
投稿时间:2018-03-14
DOI:10.15918/j.tbit1001-0645.2018.116
中文关键词:分类决策树层次结构判别方法软聚类层次模型
English Keywords:classification decision treehierarchical discriminant methodsoft clusteringhierarchical mode
基金项目:国家"十二五"科技支撑计划课题(2012BA110B01);国家卫生部行业科研专项基金项目(201302008)
作者单位
罗森林北京理工大学 信息与电子学院, 北京 100081
孙志鹏北京理工大学 信息与电子学院, 北京 100081
潘丽敏北京理工大学 信息与电子学院, 北京 100081
摘要点击次数:848
全文下载次数:318
中文摘要:
针对分类决策树算法存在的结构冗余及误差迁移问题,提出了软聚类节点分裂层次模型.通过叶子节点处决策模型构建以及软聚类节点分裂方法,实现对样本空间的高效划分,生成精简的层次结构模型.利用层次结构判别方法,从层次结构模型叶子节点到根节点对样本进行加权求和预测,降低模型结构对判定效果的影响,提高模型对判别误差的调节能力.对比了CART、ID3、C4.5共3种分类算法,该方法构建的模型结构简单,在两个数据集上均有最好的分类效果,F1-measure分别为0.53和0.38.说明软聚类节点分裂层次模型能够避免冗余结构,缓解误差迁移问题.
English Summary:
Aiming at the structural redundancy and error migration existing in the classification decision tree algorithm, a soft clustering node split hierarchical model was proposed. Through the decision-making model at the leaf nodes and the method of splitting nodes by soft clustering, the efficient partitioning of the sample space was realized, and a simplified hierarchical model was generated. Using the hierarchical discriminant method, samples were predicted with weighted summation methods from the leaf nodes to the root node of hierarchical structure model to reduce the effect of model structure on classification performance, and to improve the model's ability in discriminant errors adjustment. Compared with CART, ID3 and C4.5, the model proposed by the method is simple and showes the best classification performance on two data sets, F1-measure is 0.53 and 0.38 respectively. The experimental result indicates the soft clustering node split hierarchical model can avoid the redundant structure and alleviate the problem of error migration.
查看全文查看/发表评论下载PDF阅读器
相关话题/结构 信息 北京 北京理工大学 电子